Feeds:
Posts
Comments

Archive for the ‘Basic Science’ Category

In Ensemble Forecasting I wrote a short section on parameterization using the example of latent heat transfer and said:

Are we sure that over Connecticut the parameter CDE = 0.004, or should it be 0.0035? In fact, parameters like this are usually calculated from the average of a number of experiments. They conceal as much as they reveal. The correct value probably depends on other parameters. In so far as it represents a real physical property it will vary depending on the time of day, seasons and other factors. It might even be, “on average”, wrong. Because “on average” over the set of experiments was an imperfect sample. And “on average” over all climate conditions is a different sample.

Interestingly, a new paper has just shown up in JGR (“accepted for publication” and on their website in the pre-publishing format): Seasonal changes in physical processes controlling evaporation over an inland water, Qianyu Zhang & Heping Liu.

They carried out detailed measurements over a large reservoir (134 km² and 4-8m deep) in Mississippi for the winter and summer months of 2008. What were they trying to do?

Understanding physical processes that control turbulent fluxes of energy, heat, water vapor, and trace gases over inland water surfaces is critical in quantifying their influences on local, regional, and global climate. Since direct measurements of turbulent fluxes of sensible heat (H) and latent heat (LE) over inland waters with eddy covariance systems are still rare, process-based understanding of water-atmosphere interactions remains very limited..

..Many numerical weather prediction and climate models use the bulk transfer relations to estimate H and LE over water surfaces. Given substantial biases in modeling results against observations, process-based analysis and model validations are essential in improving parameterizations of water-atmosphere exchange processes..

Before we get into their paper, here is a relevant quote on parameterization from a different discipline. This is from Turbulent dispersion in the ocean, Garrett (2006):

Including the effects of processes that are unresolved in models is one of the central problems in oceanography.

In particular, for temperature, salinity, or some other scalar, one seeks to parameterize the eddy flux in terms of quantities that are resolved by the models. This has been much discussed, with determinations of the correct parameterization relying on a combination of deductions from the large-scale models, observations of the eddy fluxes or associated quantities, and the development of an understanding of the processes responsible for the fluxes.

The key remark to make is that it is only through process studies that we can reach an understanding leading to formulae that are valid in changing conditions, rather than just having numerical values which may only be valid in present conditions.

[Emphasis added]

Background

Latent heat transfer is the primary mechanism globally for transferring the solar radiation that is absorbed at the surface up into the atmosphere. Sensible heat is a lot smaller by comparison with latent heat. Both are “convection” in a broad term – the movement of heat by the bulk movement of air. But one is carrying the “extra heat” of evaporated water. When the evaporated water condenses (usually higher up in the atmosphere) it releases this stored heat.

Let’s take a look at the standard parameterization in use (adopting their notation) for latent heat:

LE = ρaLCEU(qw −qa)

LE = latent heat transfer, ρa = air density, L = latent heat of vaporization (2.5×106 J kg–1), CE = bulk transfer coefficient for moisture, U = wind speed, qw & qa are the respective specific humidity in the water-atmosphere interface and the over-water atmosphere

The values  ρa and L are a fundamental values. The formula says that the key parameters are:

  • wind speed (horizontal)
  • the difference between the humidity at the water surface (this is the saturated value which varies strongly with temperature) and the humidity in the air above

We would expect the differential of humidity to be important – if the air above is saturated then latent heat transfer will be zero, because there is no way to move any more water vapor into the air above. At the other extreme, if the air above is completely dry then we have maximized the potential for moving water vapor into the atmosphere.

The product of wind speed and humidity difference indicate how much mixing is going on due to air flow. There is a lot of theory and experiment behind the ideas, going back into the 1950s or further, but in the end it is an over-simplification.

That’s what all parameterizations are – over-simplifications.

The real formula is much simpler:

 LE = ρaL<w’q’>, where the brackets denote averages,w’q’ = the turbulent moisture flux

w is the upwards velocity, q is moisture; and the ‘ denoting eddies

Note to commenters, if you write < or > in the comment it gets dropped because WordPress treats it like a html tag. You need to write &lt; or &gt;

The key part of this equation just says “how much moisture is being carried upwards by turbulent flow”. That’s the real value so why don’t we measure that instead?

Here’s a graph of horizontal wind over a short time period from Stull (1988):

From Stull 1988

From Stull 1988

Figure 1

And any given location the wind varies across every timescale. Pick another location and the results are different. This is the problem of turbulence.

And to get accurate measurements for the paper we are looking at now, they had quite a setup:

Zhang 2014-instruments

Figure 2

Here’s the description of the instrumentation:

An eddy covariance system at a height of 4 m above the water surface consisted of a three-dimensional sonic anemometer (model CSAT3, Campbell Scientific, Inc.) and an open path CO2/H2O infrared gas analyzer (IRGA; Model LI-7500, LI-COR, Inc.).

A datalogger (model CR5000, Campbell Scientific, Inc.) recorded three-dimensional wind velocity components and sonic virtual temperature from the sonic anemometer and densities of carbon dioxide and water vapor from the IRGA at a frequency of 10 Hz.

Other microclimate variables were also measured, including Rn at 1.2 m (model Q-7.1, Radiation and Energy Balance Systems, Campbell Scientific, Inc.), air temperature (Ta) and relative humidity (RH) (model HMP45C, Vaisala, Inc.) at approximately 1.9, 3.0, 4.0, and 5.5 m, wind speeds (U) and wind direction (WD) (model 03001, RM Young, Inc.) at 5.5 m.

An infrared temperature sensor (model IRR-P, Apogee, Inc.) was deployed to measure water skin temperature (Tw).

Vapor pressure (ew) in the water-air interface was equivalent to saturation vapor pressure at Tw [Buck, 1981].

The same datalogger recorded signals from all the above microclimate sensors at 30-min intervals. Six deep cycling marine batteries charged by two solar panels (model SP65, 65 Watt Solar Panel, Campbell Scientific, Inc.) powered all instruments. A monthly visit to the tower was scheduled to provide maintenance and download the 10-Hz time-series data.

I don’t know the price tag but I don’t think the equipment is cheap. So this kind of setup can be used for research, but we can’t put one each every 1km across a country or an ocean and collect continuous data.

That’s why we need parameterizations if we want to get some climatological data. Of course, these need verifying, and that’s what this paper (and many others) are about.

Results

When we look back at the parameterized equation for latent heat it’s clear that latent heat should vary linearly with the product of wind speed and humidity differential. The top graph is sensible heat which we won’t focus on, the bottom graph is latent heat. Δe is humidity, expressed as partial pressure rather than g/kg. We see that the correlation between LE and wind speed x humidity differential is very different in summer and winter:

From Zhang & Liu 2014

From Zhang & Liu 2014

Figure 2

The scatterplots showing the same information:

From Zhang & Liu 2014

From Zhang & Liu 2014

Figure 3

The authors looked at the diurnal cycle – averaging the result for the time of day over the period of the results, separated into winter and summer.

Our results also suggest that the influences of U on LE may not be captured simply by the product of U and Δe [humidity differential] on short timescales, especially in summer. This situation became more serious when the ASL (atmospheric surface layer, see note 1) became more unstable, as reflected by our summer cases (i.e., more unstable) versus the winter cases.

They selected one period to review in detail. First the winter results:

From Zhang & Liu 2014

From Zhang & Liu 2014

Figure 4

On March 18, Δe was small (i.e., 0 ~ 0.2 kPa) and it experienced little diurnal variations, leading to limited water vapor supply (Fig. 5a).

The ASL (see note 1) during this period was slightly stable (Fig. 5b), which suppressed turbulent exchange of LE. As a result, LE approached zero and even became negative, though strong wind speeds of approximately around 10 ms–1 were present, indicating a strong mechanical turbulent mixing in the ASL.

On March 19, with an increased Δe up to approximately 1.0 kPa, LE closely followed Δe and increased from zero to more than 200 Wm–2. Meanwhile, the ASL experienced a transition from stable to unstable conditions (Fig. 5b), coinciding with an increase in LE.

On March 20, however, the continuous increase of Δe did not lead to an increase in LE. Instead, LE decreased gradually from 200 Wm–2 to about zero, which was closely associated with the steady decrease in U from 10 ms–1 to nearly zero and with the decreased instability.

These results suggest that LE was strongly limited by Δe, instead of U when Δe was low; and LE was jointly regulated by variations in Δe and U once a moderate Δe level was reached and maintained, indicating a nonlinear response of LE to U and Δe induced by ASL stability. The ASL stability largely contributed to variations in LE in winter.

Then the summer results:

From Zhang & Liu 2014

From Zhang & Liu 2014

Figure 5

In summer (i.e., July 23 – 25 in Fig. 6), Δe was large with a magnitude of 1.5 ~ 3.0 kPa, providing adequate water vapor supply for evaporation, and had strong diurnal variations (Fig. 6a).

U exhibited diurnal variations from about 0 to 8 ms–1. LE was regulated by both Δe and U, as reflected by the fact that LE variations on the July 24 afternoon did not follow solely either the variations of U or the variations of Δe. When the diurnal variations of Δe and U were small in July 25, LE was also regulated by both U and Δe or largely by U when the change in U was apparent.

Note that during this period, the ASL was strongly unstable in the morning and weakly unstable in the afternoon and evening (Fig. 6b), negatively corresponding to diurnal variations in LE. This result indicates that the ASL stability had minor impacts on diurnal variations in LE during this period.

Another way to see the data is by plotting the results to see how valid the parameterized equation appears. Here we should have a straight line between LE/U and Δe as the caption explains:

From Zhang & Liu 2014

From Zhang & Liu 2014

Figure 6

One method to determine the bulk transfer coefficients is to use the mass transfer relations (Eqs. 1, 2) by quantifying the slopes of the linear regression of LE against UΔe. Our results suggest that using this approach to determine the bulk transfer coefficient may cause large bias, given the fact that one UΔe value may correspond to largely different LE values.

They conclude:

Our results suggest that these highly nonlinear responses of LE to environmental variables may not be represented in the bulk transfer relations in an appropriate manner, which requires further studies and discussion.

Conclusion

Parameterizations are inevitable. Understanding their limitations is very difficult. A series of studies might indicate that there is a “linear” relationship with some scatter, but that might just be disguising or ignoring a variable that never appears in the parameterization.

As Garrett commented “..having numerical values which may only be valid in present conditions”. That is, if the mean state of another climate variable shifts the parameterization will be invalid, or less accurate.

Alternatively, given the non-linear nature of climate process, changes don’t “average out”. So the mean state of another climate variable may not shift, the mean state might be constant, but its variation with time or another variable may introduce a change in the real process that results in an overall shift in climate.

There are other problems with calculating latent heat transfer – even accepting the parameterization as the best version of “the truth” – there are large observational gaps in the parameters we need to measure (wind speed and humidity above the ocean) even at the resolution of current climate models. This is one reason why there is a need for reanalysis products.

I found it interesting to see how complicated latent heat variations were over a water surface.

References

Seasonal changes in physical processes controlling evaporation over an inland water, Qianyu Zhang & Heping Liu, JGR (2014)

Turbulent dispersion in the ocean, Chris Garrett, Progress in Oceanography (2006)

Notes

Note 1:  The ASL (atmospheric surface layer) stability is described by the Obukhov stability parameter:

ζ = z/L0

where z is the height above ground level and L0 is the Obukhov parameter.

L0 = −θvu*3/[kg(w’θv‘)s ]

where θv is virtual potential temperature (K), u* is frictional velocity by the eddy covariance system (ms–1), k is Von Karman constant (0.4), g is acceleration due to gravity (9.8 ms–2), w is vertical velocity (m s–1), and (w’θv‘)s is the flux of virtual potential temperature by the eddy covariance system

Read Full Post »

The atmosphere cools to space by radiation. Well, without getting into all the details, the surface cools to space as well by radiation but not much radiation is emitted by the surface that escapes directly to space (note 1). Most surface radiation is absorbed by the atmosphere. And of course the surface mostly cools by convection into the troposphere (lower atmosphere).

If there were no radiatively-active gases (aka “GHG”s) in the atmosphere then the atmosphere couldn’t cool to space at all.

Technically, the emissivity of the atmosphere would be zero. Emission is determined by the local temperature of the atmosphere and its emissivity. Wavelength by wavelength emissivity is equal to absorptivity, another technical term, which says what proportion of radiation is absorbed by the atmosphere. If the atmosphere can’t emit, it can’t absorb (note 2).

So as you increase the GHGs in the atmosphere you increase its ability to cool to space. A lot of people realize this at some point during their climate science journey and finally realize how they have been duped by climate science all along! It’s irrefutable – more GHGs more cooling to space, more GHGs mean less global warming!

Ok, it’s true. Now the game’s up, I’ll pack up Science of Doom into a crate and start writing about something else. Maybe cognitive dissonance..

Bye everyone!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Halfway through boxing everything up I realized there was a little complication to the simplicity of that paragraph. The atmosphere with more GHGs has a higher emissivity, but also a higher absorptivity.

Let’s draw a little diagram. Here are two “layers” (see note 3) of the atmosphere in two different cases. On the left 400 ppmv CO2, on the right 500ppmv CO2 (and relative humidity of water vapor was set at 50%, surface temperature at 288K):

Cooling-to-space-2a

Figure 1

It’s clear that the two layers are both emitting more radiation with more CO2.More cooling to space.

For interest, the “total emissivity” of the top layer is 0.190 in the first case and 0.197 in the second case. The layer below has 0.389 and 0.395.

Let’s take a look at all of the numbers and see what is going on. This diagram is a little busier:

Cooling-to-space-3a

Figure 2

The key point is that the OLR (outgoing longwave radiation) is lower in the case with more CO2. Yet each layer is emitting more radiation. How can this be?

Take a look at the radiation entering the top layer on the left = 265.1, and add to that the emitted radiation = 23.0 – the total is 288.1. Now subtract the radiation leaving through the top boundary = 257.0 and we get the radiation absorbed in the layer. This is 31.1 W/m².

Compare that with the same calculation with more CO2 – the absorption is 32.2 W/m².

This is the case all the way up through the atmosphere – each layer emits more because its emissivity has increased, but it also absorbs more because its absorptivity has increased by the same amount.

So more cooling to space, but unfortunately more absorption of the radiation below – two competing terms.

So why don’t they cancel out?

Emission of radiation is a result of local temperature and emissivity.

Absorption of radiation is the result of the incident radiation and absorptivity. Incident upwards radiation started lower in the atmosphere where it is hotter. So absorption changes always outweigh emission changes (note 4).

Conceptual Problems?

If it’s still not making sense then think about what happens as you reduce the GHGs in the atmosphere. The atmosphere emits less but absorbs even less of the radiation from below. So the outgoing longwave radiation increases. More surface radiation is making it to the top of atmosphere without being absorbed. So there is less cooling to space from the atmosphere, but more cooling to space from the surface and the atmosphere.

If you add lagging to a pipe, the temperature of the pipe increases (assuming of course it is “internally” heated with hot water). And yet, the pipe cools to the surrounding room via the lagging! Does that mean more lagging, more cooling? No, it’s just the transfer mechanism for getting the heat out.

That was just an analogy. Analogies don’t prove anything. If well chosen, they can be useful in illustrating problems. End of analogy disclaimer.

If you want to understand more about how radiation travels through the atmosphere and how GHG changes affect this journey, take a look at the series Visualizing Atmospheric Radiation.

 

Notes

Note 1: For more on the details see

Note 2: A very basic point – absolutely essential for understanding anything at all about climate science – is that the absorptivity of the atmosphere can be (and is) totally different from its emissivity when you are considering different wavelengths. The atmosphere is quite transparent to solar radiation, but quite opaque to terrestrial radiation – because they are at different wavelengths. 99% of solar radiation is at wavelengths less than 4 μm, and 99% of terrestrial radiation is at wavelengths greater than 4 μm. That’s because the sun’s surface is around 6000K while the earth’s surface is around 290K. So the atmosphere has low absorptivity of solar radiation (<4 μm) but high emissivity of terrestrial radiation.

Note 3: Any numerical calculation has to create some kind of grid. This is a very course grid, with 10 layers of roughly equal pressure in the atmosphere from the surface to 200mbar. The grid assumes there is just one temperature for each layer. Of course the temperature is decreasing as you go up. We could divide the atmosphere into 30 layers instead. We would get more accurate results. We would find the same effect.

Note 4: The equations for radiative transfer are found in Atmospheric Radiation and the “Greenhouse” Effect – Part Six – The Equations. The equations prove this effect.

Read Full Post »

In A Challenge for Bryan I put up a simple heat transfer problem and asked for the equations. Bryan elected not to provide these equations. So I provide the answer, but also attempt some enlightenment for people who don’t think the answer can be correct.

As DeWitt Payne noted, a post with a similar problem posted on Wattsupwiththat managed to gather some (unintentionally) hilarious comments.

Here’s the problem again:

Case 1

Spherical body, A, of radius ra, with an emissivity, εa =1. The sphere is in the vacuum of space.

It is internally heated by a mystery power source (let’s say nuclear, but it doesn’t matter), with power input = P.

The sphere radiates into deep space, let’s say the temperature of deep space = 0K to make the maths simpler.

1. What is the equation for the equilibrium surface temperature of the sphere, Ta?

Case 2

The condition of case A, but now body A is surrounded by a slightly larger spherical shell, B, which of course is itself now surrounded by deep space at 0K.

B has a radius rb, with an emissivity, εb =1. This shell is highly conductive and very thin.

2a. What is the equation for the new equilibrium surface temperature, Ta’?

2b. What is the equation for the equilibrium temperature, Tb, of shell B?

 

Notes:

The reason for the “slightly larger shell” is to avoid “complex” view factor issues. Of course, I’m happy to relax the requirement for “slightly larger” and let Bryan provide the more general answer.

The reason for the “highly conductive” and “thin” outer shell, B, is to avoid any temperature difference between the inside and the outside surfaces of the shell. That is, we can assume the outside surface is at the same temperature as the inside surface – both at temperature, Tb.

This kind of problem is a staple of introductory heat transfer. This is a “find the equilibrium” problem.

How do we solve these kinds of problems? It’s pretty easy once you understand the tools.

The first tool is the first law of thermodynamics. Steady state means temperatures have stabilized and so energy in = energy out. We draw a “boundary” around each body and apply the “boundary condition” of the first law.

The second tool is the set of equations that govern the movement of energy. These are the equations for conduction, convection and radiation. In this case we just have radiation to consider.

For people who see the solution, shake their heads and say, this can’t be, stay on to the end and I will try and shed some light on possible conceptual problems. Of course, if it’s wrong, you should easily be able to provide the correct equations – or even if you can’t write equations you should be able to explain the flaw in the formulation of the equation.

In the original article I put some numbers down – “For anyone who wants to visualize some numbers: ra=1m, P=1000W, rb=1.01m“. I will use these to calculate an answer from the equations. I realize many readers aren’t comfortable with equations and so the answers will help illuminate the meaning of the equations.

I go through the equations in tedious detail, again for people who would like to follow the maths but don’t find maths easy.

Case 1

Energy in, Ein = Energy out, Eout  :  in Watts (Joules per second).

Ein = P

Eout = emission of thermal radiation per unit area x area

The first part is given by the Stefan-Boltzmann equation (σTa4, where σ = 5.67×10-8), and the second part by the equation for the surface area of a sphere (4πra²)

Eout = 4πra² x σTa4 …..[eqn 1]

Therefore, P = 4πra²σTa4 ….[eqn 2]

We have to rearrange the equation to see how Ta changes with the other factors:

Ta = [P / (4πra²σ)]1/4 ….[eqn 3]

If you aren’t comfortable with maths this might seem a little daunting. Let’s put the numbers in:

Ta = 194K (-80ºC)

Now we haven’t said anything about how long it takes to reach this temperature. We don’t have enough information for that. That’s the nice thing about steady state calculations, they are easier than dynamic calculations. We will look at that at the end.

Probably everyone is happy with this equation. Energy is conserved. No surprises and nothing controversial.

Now we will apply the exact same approach to the second case.

Case 2

First we consider “body A”. Given that it is enclosed by another “body” – the shell B – we have to consider any energy being transferred by radiation from B to A. If it turns out to be zero, of course it won’t affect the temperature of body A.

Ein(a) = P + Eb-a ….[eqn 4], where Eb-a is a value we don’t yet know. It is the radiation from B absorbed by A.

Eout(a) = 4πra² x σTa4 ….[eqn 5]- this is the same as in case 1. Emission of radiation from a body only depends on its temperature (and emissivity and area but these aren’t changing between the two cases)

- we will look at shell B and come back to the last term in eqn 4.

Now the shell outer surface:

Radiates out to space

We set space at absolute zero so no radiation is received by the outer surface

Shell inner surface:

Radiates in to A (in fact almost all of the radiation emitted from the inner surface is absorbed by A and for now we will treat it as all) – this was the term Eb-a

Absorbs all of the radiation emitted by A, this is Eout(a)

And we made the shell thin and highly conductive so there is no temperature difference between the two surfaces. Let’s collect the heat transfer terms for shell B under steady state:

Ein(b) = Eout(a) + 0  …..[eqn 6] – energy in is all from the sphere A, and nothing from outside

             =  4πra² x σTa4 ….[eqn 6a] – we just took the value from eqn 5

Eout(b) = 4πrb² x σTb4 + 4πrb² x σTb4 …..[eqn 7] – energy out is the emitted radiation from the inner surface + emitted radiation from the outer surface

                = 2 x 4πrb² x σTb4 ….[eqn 7a]

 And we know that for shell B, Ein = Eout so we equate 6a and 7a:

4πra² x σTa4 = 2 x 4πrb² x σTb4 ….[eqn 8]

and now we can cancel a lot of the common terms:

ra² x Ta4 = 2 x rb² x Tb4 ….[eqn 8a]

and re-arrange to get Ta in terms of Tb:

Ta4 = 2rb²/ra² x Tb4 ….[eqn 8b]

Ta = [2rb²/ra²]1/4 x Tb ….[eqn 8b]

or we can write it the other way round:

Tb = [ra²/2rb²]1/4 x Ta ….[eqn 8c]

Using the numbers given, Ta = 1.2 Tb. So the sphere is 20% warmer than the shell (actually 2 to the power 1/4).

We need to use Ein=Eout for the sphere A to be able to get the full solution. We wrote down: Ein(a) = P + Eb-a ….[eqn 4]. Now we know “Eb-a” – this is one of the terms in eqn 7.

So:

Ein(a) = P + 4πrb² x σTb4 ….[eqn 9]

and Ein(a) = Eout(a), so:

P + 4πrb² x σTb4 = 4πra² x σTa4  ….[eqn 9]

we can substitute the equation for Tb:

P + 4πra² /2 x σTa4 = 4πra² x σTa4  ….[eqn 9a]

the 2nd term on the left and the right hand side can be combined:

P = 2πra² x σTa4  ….[eqn 9a]

And so, voila:

T’a = [P / (2πra²σ)]1/4 ….[eqn 10] – I added a dash to Ta so we can compare it with the original value before the shell arrived.

T’a = 21/4 Ta   ….[eqn 11] – that is, the temperature of the sphere A is about 20% warmer in case 2 compared with case 1.

Using the numbers, T’a = 230 K (-43ºC). And Tb = 193 K (-81ºC)

Explaining the Results

In case 2, the inner sphere, A, has its temperature increase by 36K even though the same energy production takes place inside. Obviously, this can’t be right because we have created energy??.. let’s come back to that shortly.

Notice something very important - Tb in case 2 is almost identical to Ta in case 1. The difference is actually only due to the slight difference in surface area. Why?

The system has an energy production, P, in both cases.

  • In case 1, the sphere A is the boundary transferring energy to space and so its equilibrium temperature must be determined by P
  • In case 2, the shell B is the boundary transferring energy to space and so its equilibrium temperature must be determined by P

Now let’s confirm the mystery unphysical totally fake invented energy.

Let’s compare the flux emitted from A in case 1 and case 2. I’ll call it R.

  • R(case 1) = 80 W/m²
  • R(case 2) = 159 W/m²

This is obviously rubbish. The same energy source inside the sphere and we doubled the sphere’s energy production!!! Get this idiot to take down this post, he has no idea what he is writing..

Yet if we check the energy balance we find that 80 W/m² is being “created” by our power source, and the “extra mystery” energy of 79 W/m² is coming from our outer shell. In any given second no energy is created.

The Mystery Invented Energy – Revealed

When we snapped the outer shell over the sphere we made it harder for heat to get out of the system. Energy in = energy out, in steady state. When we are not in steady state: energy in – energy out = energy retained. Energy retained is internal energy which is manifested as temperature.

We made it hard for heat to get out, which accumulated energy, which increased temperature.. until finally the inner sphere A was hot enough for all of the internally generated energy, P, to get out of the system.

Let’s add some information about the system: the heat capacity of the sphere = 1000 J/K; the heat capacity of the shell = 100 J/K. It doesn’t much matter what they are, it’s just to calculate the transients. We snap the shell – originally at 0K – around the sphere at time t=100 seconds and see what happens.

The top graph shows temperature, the bottom graph shows change in energy of the two objects and how much energy is leaving the system:

Bryan-sphere

At 100 seconds we see that instead of our steady state 1000W leaving the system, instead 0W leaves the system. This is the important part of the mystery energy puzzle.

We put a 0K shell around the sphere. This absorbs all the energy from the sphere. At time t=100s the shell is still at 0K so it emits 0W/m². It heats up pretty quickly, but remember that emission of radiation is not linear with temperature so you don’t see a linear relationship between the temperature of shell B and the energy leaving to space. For example at 100K, the outward emission is 6 W/m², at 150K it is 29 W/m² and at its final temperature of 193K, it is 79 W/m² (=1000 W in total).

As the shell heats up it emits more and more radiation inwards, heating up the sphere A.

The mystery energy has been revealed. The addition of a radiation barrier stopped energy leaving, which stored heat. The way equilibrium is finally restored is due to the temperature increase of the sphere.

Of course, for some strange reason an army of people thinks this is totally false. Well, produce your equations.. (this never happens)

All we have done here is used conservation of energy and the Stefan Boltzmann law of emission of thermal radiation.

Read Full Post »

Bryan needs no introduction on this blog, but if we were to introduce him it would be as the fearless champion of Gerlich and Tscheuschner.

Bryan has been trying to teach me some basics on heat transfer from the Ladybird Book of Thermodynamics. In hilarious fashion we both already agree on that particular point.

So now here is a problem for Bryan to solve.

Of course, in Game of Thrones fashion, Bryan can nominate his own champion to solve the problem.

Case A

Spherical body, A, of radius ra, with an emissivity, εa =1. The sphere is in the vacuum of space.

It is internally heated by a mystery power source (let’s say nuclear, but it doesn’t matter), with power input = P.

The sphere radiates into deep space, let’s say the temperature of deep space = 0K to make the maths simpler.

1. What is the equation for the equilibrium surface temperature of the sphere, Ta?

Case B

The condition of case A, but now body A is surrounded by a slightly larger spherical shell, B, which of course is itself now surrounded by deep space at 0K.

B has a radius rb, with an emissivity, εb =1. This shell is highly conductive and very thin.

2a. What is the equation for the new equilibrium surface temperature, Ta’?

2b. What is the equation for the equilibrium temperature, Tb, of shell B?

 

Notes:

The reason for the “slightly larger shell” is to avoid “complex” view factor issues. Of course, I’m happy to relax the requirement for “slightly larger” and let Bryan provide the more general answer.

The reason for the “highly conductive” and “thin” outer shell, B, is to avoid any temperature difference between the inside and the outside surfaces of the shell. That is, we can assume the outside surface is at the same temperature as the inside surface – both at temperature, Tb.

For anyone who wants to visualize some numbers: ra=1m, P=1000W, rb=1.01m

This problem takes a couple of minutes to solve on a piece of paper. I suspect we will wait a decade for Bryan’s answer. But I love to be proved wrong!

Read Full Post »

In The “Greenhouse” Effect Explained in Simple Terms I list, and briefly explain, the main items that create the “greenhouse” effect. I also explain why more CO2 (and other GHGs) will, all other things remaining equal, increase the surface temperature. I recommend that article as the place to go for the straightforward explanation of the “greenhouse” effect. It also highlights that the radiative balance higher up in the troposphere is the most important component of the “greenhouse” effect.

However, someone recently commented on my first Kramm & Dlugi article and said I was “plainly wrong”. Kramm & Dlugi were in complete agreement with Gerlich and Tscheuschner because they both claim the “purported greenhouse effect simply doesn’t exist in the real world”.

If it’s just about flying a flag or wearing a football jersey then I couldn’t agree more. However, science does rely on tedious detail and “facts” rather than football jerseys. As I pointed out in New Theory Proves AGW Wrong! two contradictory theories don’t add up to two theories making the same case..

In the case of the first Kramm & Dlugi article I highlighted one point only. It wasn’t their main point. It wasn’t their minor point. They weren’t even making a point of it at all.

Many people believe the “greenhouse” effect violates the second law of thermodynamics, these are herein called “the illuminati”.

Kramm & Dlugi’s equation demonstrates that the illuminati are wrong. I thought this was worth pointing out.

The “illuminati” don’t understand entropy, can’t provide an equation for entropy, or even demonstrate the flaw in the simplest example of why the greenhouse effect is not in violation of the second law of thermodynamics. Therefore, it is necessary to highlight the (published) disagreement between celebrated champions of the illuminati – even if their demonstration of the disagreement was unintentional.

Let’s take a look.

Here is the one of the most popular G&T graphics in the blogosphere:

From Gerlich & Tscheuschner

From Gerlich & Tscheuschner

Figure 1

It’s difficult to know how to criticize an imaginary diagram. We could, for example, point out that it is imaginary. But that would be picky.

We could say that no one draws this diagram in atmospheric physics. That should be sufficient. But as so many of the illuminati have learnt their application of the second law of thermodynamics to the atmosphere from this fictitious diagram I feel the need to press forward a little.

Here is an extract from a widely-used undergraduate textbook on heat transfer, with a little annotation (red & blue):

From Incropera & DeWitt (2007)

From “Fundamentals of Heat and Mass Transfer” by Incropera & DeWitt (2007)

Figure 2

This is the actual textbook, before the Gerlich manoeuvre as I would like to describe it. We can see in the diagram and in the text that radiation travels both ways and there is a net transfer which is from the hotter to the colder. The term “net” is not really capable of being confused. It means one minus the other, “x-y”. Not “x”. (For extracts from six heat transfer textbooks and their equations read Amazing Things we Find in Textbooks – The Real Second Law of Thermodynamics).

Now let’s apply the Gerlich manoeuvre (compare fig. 2):

Fundamentals-of-heat-and-mass-transfer-post-G&T

Not from “Fundamentals of Heat and Mass Transfer”, or from any textbook ever

Figure 3

So hopefully that’s clear. Proof by parody. This is “now” a perpetual motion machine and so heat transfer textbooks are wrong. All of them. Somehow.

Just for comparison, we can review the globally annually averaged values of energy transfer in the atmosphere, including radiation, from Kiehl & Trenberth (I use the 1997 version because it is so familiar even though values were updated more recently):

From Kiehl & Trenberth (1997)

From Kiehl & Trenberth (1997)

Figure 4

It should be clear that the radiation from the hotter surface is higher than the radiation from the colder atmosphere. If anyone wants this explained, please ask.

I could apply the Gerlich manoeuvre to this diagram but they’ve already done that in their paper (as shown above in figure 1).

So lastly, we return to Kramm & Dlugi, and their “not even tiny point”, which nevertheless makes a useful point. They don’t provide a diagram, they provide an equation for energy balance at the surface – and I highlight each term in the equation to assist the less mathematically inclined:

Kramm-Dlugi-2011-eqn-highlight

 

Figure 5

The equation says, the sum of all fluxes – at one point on the surface = 0. This is an application of the famous first law of thermodynamics, that is, energy cannot be created or destroyed.

The red term – absorbed atmospheric radiation – is the radiation from the colder atmosphere absorbed by the hotter surface. This is also known as “DLR” or “downward longwave radiation, and as “back-radiation”.

Now, let’s assume that the atmospheric radiation increases in intensity over a small period. What happens?

The only way this equation can continue to be true is for one or more of the last 4 terms to increase.

  • The emitted surface radiation – can only increase if the surface temperature increases
  • The latent heat transfer – can only increase if there is an increase in wind speed or in the humidity differential between the surface and the atmosphere just above
  • The sensible heat transfer – can only increase if there is an increase in wind speed or in the temperature differential between the surface and the atmosphere just above
  • The heat transfer into the ground – can only increase if the surface temperature increases or the temperature below ground spontaneously cools

So, when atmospheric radiation increases the surface temperature must increase (or amazingly the humidity differential spontaneously increases to balance, but without a surface temperature change). According to G&T and the illuminati this surface temperature increase is impossible. According to Kramm & Dlugi, this is inevitable.

I would love it for Gerlich or Tscheuschner to show up and confirm (or deny?):

  • yes the atmosphere does emit thermal radiation
  • yes the surface of the earth does absorb atmospheric thermal radiation
  • yes this energy does not disappear (1st law of thermodynamics)
  • yes this energy must increase the temperature of the earth’s surface above what it would be if this radiation did not exist (1st law of thermodynamics)

Or even, which one of the above is wrong. That would be outstanding.

Of course, I know they won’t do that – even though I’m certain they believe all of the above points. (Likewise, Kramm & Dlugi won’t answer the question I have posed of them).

Well, we all know why

Hopefully, the illuminati can contact Kramm & Dlugi and explain to them where they went wrong. I have my doubts that any of the illuminati have grasped the first law of thermodynamics or the equation for temperature change and heat capacity, but who could say.

Read Full Post »

Over the last few years I’ve written lots of articles relating to the inappropriately-named “greenhouse” effect and covered some topics in great depth. I’ve also seen lots of comments and questions which has helped me understand common confusion and misunderstandings.

This article, with huge apologies to regular long-suffering readers, covers familiar ground in simple terms. It’s a reference article. I’ve referenced other articles and series as places to go to understand a particular topic in more detail.

One of the challenges of writing a short simple explanation is it opens you up to the criticism of having omitted important technical details that you left out in order to keep it short. Remember this is the simple version..

Preamble

First of all, the “greenhouse” effect is not AGW. In maths, physics, engineering and other hard sciences, one block is built upon another block. AGW is built upon the “greenhouse” effect. If AGW is wrong, it doesn’t invalidate the greenhouse effect. If the greenhouse effect is wrong, it does invalidate AGW.

The greenhouse effect is built on very basic physics, proven for 100 years or so, that is not in any dispute in scientific circles. Fantasy climate blogs of course do dispute it.

Second, common experience of linearity in everyday life cause many people to question how a tiny proportion of “radiatively-active” molecules can have such a profound effect. Common experience is not a useful guide. Non-linearity is the norm in real science. Since the enlightenment at least, scientists have measured things rather than just assumed consequences based on everyday experience.

The Elements of the “Greenhouse” Effect

Atmospheric Absorption

1. The “radiatively-active” gases in the atmosphere:

  • water vapor
  • CO2
  • CH4
  • N2O
  • O3
  • and others

absorb radiation from the surface and transfer this energy via collision to the local atmosphere. Oxygen and nitrogen absorb such a tiny amount of terrestrial radiation that even though they constitute an overwhelming proportion of the atmosphere their radiative influence is insignificant (note 1).

How do we know all this? It’s basic spectroscopy, as detailed in exciting journals like the Journal of Quantitative Spectroscopy and Radiative Transfer over many decades. Shine radiation of a specific wavelength through a gas and measure the absorption. Simple stuff and irrefutable.

Atmospheric Emission

2. The “radiatively-active” gases in the atmosphere also emit radiation. Gases that absorb at a wavelength also emit at that wavelength. Gases that don’t absorb at that wavelength don’t emit at that wavelength. This is a consequence of Kirchhoff’s law.

The intensity of emission of radiation from a local portion of the atmosphere is set by the atmospheric emissivity and the temperature.

Convection

3. The transfer of heat within the troposphere is mostly by convection. The sun heats the surface of the earth through the (mostly) transparent atmosphere (note 2). The temperature profile, known as the “lapse rate”, is around 6K/km in the tropics. The lapse rate is principally determined by non-radiative factors – as a parcel of air ascends it expands into the lower pressure and cools during that expansion (note 3).

The important point is that the atmosphere is cooler the higher you go (within the troposphere).

Energy Balance

4. The overall energy in the climate system is determined by the absorbed solar radiation and the emitted radiation from the climate system. The absorbed solar radiation – globally annually averaged – is approximately 240 W/m² (note 4). Unsurprisingly, the emitted radiation from the climate system is also (globally annually averaged) approximately 240 W/m². Any change in this and the climate is cooling or warming.

Emission to Space

5. Most of the emission of radiation to space by the climate system is from the atmosphere, not from the surface of the earth. This is a key element of the “greenhouse” effect. The intensity of emission depends on the local atmosphere. So the temperature of the atmosphere from which the emission originates determines the amount of radiation.

If the place of emission of radiation – on average – moves upward for some reason then the intensity decreases. Why? Because it is cooler the higher up you go in the troposphere. Likewise, if the place of emission – on average – moves downward for some reason, then the intensity increases (note 5).

More GHGs

6. If we add more radiatively-active gases (like water vapor and CO2) then the atmosphere becomes more “opaque” to terrestrial radiation and the consequence is the emission to space from the atmosphere moves higher up (on average). Higher up is colder. See note 6.

So this reduces the intensity of emission of radiation, which reduces the outgoing radiation, which therefore adds energy into the climate system. And so the climate system warms (see note 7).

That’s it!

It’s as simple as that. The end.

A Few Common Questions

CO2 is Already Saturated

There are almost 315,000 individual absorption lines for CO2 recorded in the HITRAN database. Some absorption lines are stronger than others. At the strongest point of absorption – 14.98 μm (667.5 cm-1), 95% of radiation is absorbed in only 1m of the atmosphere (at standard temperature and pressure at the surface). That’s pretty impressive.

By contrast, from 570 – 600 cm-1 (16.7 – 17.5 μm) and 730 – 770 cm-1 (13.0 – 13.7 μm) the CO2 absorption through the atmosphere is nowhere near “saturated”. It’s more like 30% absorbed through a 1km path.

You can see the complexity of these results in many graphs in Atmospheric Radiation and the “Greenhouse” Effect – Part Nine – calculations of CO2 transmittance vs wavelength in the atmosphere using the 300,000 absorption lines from the HITRAN database, and see also Part Eight – interesting actual absorption values of CO2 in the atmosphere from Grant Petty’s book

The complete result combining absorption and emission is calculated in Visualizing Atmospheric Radiation – Part Seven – CO2 increases – changes to TOA in flux and spectrum as CO2 concentration is increased

CO2 Can’t Absorb Anything of Note Because it is Only .04% of the Atmosphere

See the point above. Many spectroscopy professionals have measured the absorptivity of CO2. It has a huge variability in absorption, but the most impressive is that 95% of 14.98 μm radiation is absorbed in just 1m. How can that happen? Are spectroscopy professionals charlatans? You need evidence, not incredulity. Science involves measuring things and this has definitely been done. See the HITRAN database.

Water Vapor Overwhelms CO2

This is an interesting point, although not correct when we consider energy balance for the climate. See Visualizing Atmospheric Radiation – Part Four – Water Vapor – results of surface (downward) radiation and upward radiation at TOA as water vapor is changed.

The key point behind all the detail is that the top of atmosphere radiation change (as CO2 changes) is the important one. The surface change (forcing) from increasing CO2 is not important, is definitely much weaker and is often insignificant. Surface radiation changes from CO2 will, in many cases, be overwhelmed by water vapor.

Water vapor does not overwhelm CO2 high up in the atmosphere because there is very little water vapor there – and the radiative effect of water vapor is dramatically impacted by its concentration, due to the “water vapor continuum”.

The Calculation of the “Greenhouse” Effect is based on “Average Surface Temperature” and there is No Such Thing

Simplified calculations of the “greenhouse” effect use some averages to make some points. They help to create a conceptual model.

Real calculations, using the equations of radiative transfer, don’t use an “average” surface temperature and don’t rely on a 33K “greenhouse” effect. Would the temperature decrease 33K if all of the GHGs were removed from the atmosphere? Almost certainly not. Because of feedbacks. We don’t know the effect of all of the feedbacks. But would the climate be colder? Definitely.

See The Rotational Effect – why the rotation of the earth has absolutely no effect on climate, or so a parody article explains..

The Second Law of Thermodynamics Prohibits the Greenhouse Effect, or so some Physicists Demonstrated..

See The Three Body Problem – a simple example with three bodies to demonstrate how a “with atmosphere” earth vs a “without atmosphere earth” will generate different equilibrium temperatures. Please review the entropy calculations and explain (you will be the first) where they are wrong or perhaps, or perhaps explain why entropy doesn’t matter (and revolutionize the field).

See Gerlich & Tscheuschner for the switch and bait routine by this operatic duo.

And see Kramm & Dlugi On Dodging the “Greenhouse” Bullet – Kramm & Dlugi demonstrate that the “greenhouse” effect doesn’t exist by writing a few words in a conclusion but carefully dodging the actual main point throughout their entire paper. However, they do recover Kepler’s laws and point out a few errors in a few websites. And note that one of the authors kindly showed up to comment on this article but never answered the important question asked of him. Probably just too busy.. Kramm & Dlugi also helpfully (unintentionally) explain that G&T were wrong, see Kramm & Dlugi On Illuminating the Confusion of the Unclear – Kramm & Dlugi step up as skeptics of the “greenhouse” effect, fans of Gerlich & Tscheuschner and yet clarify that colder atmospheric radiation is absorbed by the warmer earth..

And for more on that exciting subject, see Confusion over the Basics under the sub-heading The Second Law of Thermodynamics.

Feedbacks overwhelm the Greenhouse Effect

This is a totally different question. The “greenhouse” effect is the “greenhouse” effect. If the effect of more CO2 is totally countered by some feedback then that will be wonderful. But that is actually nothing to do with the “greenhouse” effect. It would be a consequence of increasing temperature.

As noted in the preamble, it is important to separate out the different building blocks in understanding climate.

Miskolczi proved that the Greenhouse Effect has no Effect

Miskolczi claimed that the greenhouse effect was true. He also claimed that more CO2 was balanced out by a corresponding decrease in water vapor. See the Miskolczi series for a tedious refutation of his paper that was based on imaginary laws of thermodynamics and questionable experimental evidence.

Once again, it is important to be able to separate out two ideas. Is the greenhouse effect false? Or is the greenhouse effect true but wiped out by a feedback?

If you don’t care, so long as you get the right result you will be in ‘good’ company (well, you will join an extremely large company of people). But this blog is about science. Not wishful thinking. Don’t mix the two up..

Convection “Short-Circuits” the Greenhouse Effect

Let’s assume that regardless of the amount of energy arriving at the earth’s surface, that the lapse rate stays constant and so the more heat arriving, the more heat leaves. That is, the temperature profile stays constant. (It’s a questionable assumption that also impacts the AGW question).

It doesn’t change the fact that with more GHGs, the radiation to space will be from a higher altitude. A higher altitude will be colder. Less radiation to space and so the climate warms – even with this “short-circuit”.

In a climate without convection, the surface temperature will start off higher, and the GHG effect from doubling CO2 will be higher. See Radiative Atmospheres with no Convection.

In summary, this isn’t an argument against the greenhouse effect, this is possibly an argument about feedbacks. The issue about feedbacks is a critical question in AGW, not a critical question for the “greenhouse” effect. Who can say whether the lapse rate will be constant in a warmer world?

Notes

Note 1 – An important exception is O2 absorbing solar radiation high up above the troposphere (lower atmosphere). But O2 does not absorb significant amounts of terrestrial radiation.

Note 2 – 99% of solar radiation has a wavelength <4μm. In these wavelengths, actually about 1/3 of solar radiation is absorbed in the atmosphere. By contrast, most of the terrestrial radiation, with a wavelength >4μm, is absorbed in the atmosphere.

Note 3 – see:

Density, Stability and Motion in Fluids – some basics about instability
Potential Temperature – explaining “potential temperature” and why the “potential temperature” increases with altitude
Temperature Profile in the Atmosphere – The Lapse Rate – lots more about the temperature profile in the atmosphere

Note 4 – see Earth’s Energy Budget – a series on the basics of the energy budget

Note 5 – the “place of emission” is a useful conceptual tool but in reality the emission of radiation takes place from everywhere between the surface and the stratosphere. See Visualizing Atmospheric Radiation – Part Three – Average Height of Emission – the complex subject of where the TOA radiation originated from, what is the “Average Height of Emission” and other questions.

Also, take a look at the complete series: Visualizing Atmospheric Radiation.

Note 6 – the balance between emission and absorption are found in the equations of radiative transfer. These are derived from fundamental physics – see Atmospheric Radiation and the “Greenhouse” Effect – Part Six – The Equations – the equations of radiative transfer including the plane parallel assumption and it’s nothing to do with blackbodies. The fundamental physics is not just proven in the lab, spectral measurements at top of atmosphere and the surface match the calculated values using the radiative transfer equations – see Theory and Experiment – Atmospheric Radiation – real values of total flux and spectra compared with the theory.

Also, take a look at the complete series: Atmospheric Radiation and the “Greenhouse” Effect

Note 7 – this calculation is under the assumption of “all other things being equal”. Of course, in the real climate system, all other things are not equal. However, to understand an effect “pre-feedback” we need to separate it from the responses to the system.

Read Full Post »

If we open an introductory atmospheric physics textbook, we find that the temperature profile in the troposphere (lower atmosphere) is mostly explained by convection. (See for example, Things Climate Science has Totally Missed? – Convection)

We also find that the temperature profile in the stratosphere is mostly determined by radiation. And that the overall energy balance of the climate system is determined by radiation.

Many textbooks introduce the subject of convection in this way:

  • what would the temperature profile be like if there was no convection, only radiation for heat transfer
  • why is the temperature profile actually different
  • how does pressure reduce with height
  • what happens to air when it rises and expands in the lower pressure environment
  • derivation of the “adiabatic lapse rate”, which in layman’s terms is the temperature change when we have relatively rapid movements of air
  • how the real world temperature profile (lapse rate) compares with the calculated adiabatic lapse rate and why

We looked at the last four points in some detail in a few articles:

Density, Stability and Motion in Fluids – some basics about instability
Potential Temperature – explaining “potential temperature” and why the “potential temperature” increases with altitude
Temperature Profile in the Atmosphere – The Lapse Rate – lots more about the temperature profile in the atmosphere

In this article we will look at the first point.

All of the atmospheric physics textbooks I have seen use a very simple model for explaining the temperature profile in a fictitious “radiation only” environment. The simple model is great for giving insight into how radiation travels.

Physics textbooks, good ones anyway, try and use the simplest models to explain a phenomenon.

The simple model, in brief, is the “semi-gray approximation”. This says the atmosphere is completely transparent to solar radiation, but opaque to terrestrial radiation. Its main simplification is having a constant absorption with wavelength. This makes the problem nice and simple analytically – which means we can rewrite the starting equations and plot a nice graph of the result.

However, atmospheric absorption is the total opposite of constant. Here is an example of the absorption vs wavelength of a minor “greenhouse” gas:

From Vardavas & Taylor (2007)

From Vardavas & Taylor (2007)

Figure 1

So from time to time I’ve wondered what the “no convection” atmosphere would look like with real GHG absorption lines. I also thought it would be especially interesting to see the effect of doubling CO2 in this fictitious environment.

This article is for curiosity value only, and for helping people understand radiative transfer a little better.

We will use the Matlab program seen in the series Visualizing Atmospheric Radiation. This does a line by line calculation of radiative transfer for all of the GHGs, pulling the absorption data out of the HITRAN database.

I updated the program in a few subtle ways. Mainly the different treatment of the stratosphere – the place where convection stops – was removed. Because, in this fictitious world there is no convection in the lower atmosphere either.

Here is a simulation based on 380 ppm CO2, 1775 ppb CH4, 319 ppb N2O and 50% relative humidity all through the atmosphere. Top of atmosphere was 100 mbar and the atmosphere was divided into 40 layers of equal pressure. Absorbed solar radiation was set to 240 W/m² with no solar absorption in the atmosphere. That is (unlike in the real world), the atmosphere has been made totally transparent to solar radiation.

The starting point was a surface temperature of 288K (15ºC) and a lapse rate of 6.5K/km – with no special treatment of the stratosphere. The final surface temperature was 326K (53ºC), an increase of 38ºC:

Temp-profile-no-convection-current-GHGs-40-levels-50%RH

Figure 2

The ocean depth was only 5m. This just helps get to a new equilibrium faster. If we change the heat capacity of a system like this the end result is the same, the only difference is the time taken.

Water vapor was set at a relative humidity of 50%. For these first results I didn’t get the simulation to update the absolute humidity as the temperature changed. So the starting temperature was used to calculate absolute humidity and that mixing ratio was kept constant:

wv-conc-no-convection-current-GHGs-40-levels-50%RH

Figure 3

The lapse rate, or temperature drop per km of altitude:

LapseRate-noconvection-current-GHGs-40-levels-50%RH

Figure 4

The flux down and flux up vs altitude:

Flux-noconvection-current-GHGs-40-levels-50%RH

Figure 5

The top of atmosphere upward flux is 240 W/m² (actually at the 500 day point it was 239.5 W/m²) – the same as the absorbed solar radiation (note 1). The simulation doesn’t “force” the TOA flux to be this value. Instead, any imbalance in flux in each layer causes a temperature change, moving the surface and each part of the atmosphere into a new equilibrium.

A bit more technically for interested readers.. For a given layer we sum:

  • upward flux at the bottom of a layer minus upward flux at the top of a layer
  • downward flux at the top of a layer minus downward flux at the bottom of a layer

This sum equates to the “heating rate” of the layer. We then use the heat capacity and time to work out the temperature change. Then the next iteration of the simulation redoes the calculation.

And even more technically:

  • the upwards flux at the top of a layer = the upwards flux at the bottom of the layer x transmissivity of the layer plus the emission of that layer
  • the downwards flux at the bottom of a layer = the downwards flux at the top of the layer x transmissivity of the layer plus the emission of that layer

End of “more technically”..

Anyway, the main result is the surface is much hotter and the temperature drop per km of altitude is much greater than the real atmosphere. This is because it is “harder” for heat to travel through the atmosphere when radiation is the only mechanism. As the atmosphere thins out, which means less GHGs, radiation becomes progressively more effective at transferring heat. This is why the lapse rate is lower higher up in the atmosphere.

Now let’s have a look at what happens when we double CO2 from its current value (380ppm -> 760 ppm):

Temp-profile-no-convection-doubled-GHGs-40-levels-50%RH

Figure 6 – with CO2 doubled instantaneously from 380ppm at 500 days

The final surface temperature is 329.4, increased from 326.2K. This is an increase (no feedback of 3.2K).

The “pseudo-radiative forcing” = 18.9 W/m² (which doesn’t include any change to solar absorption). This radiative forcing is the immediate change in the TOA forcing. (It isn’t directly comparable to the IPCC standard definition which is at the tropopause and after the stratosphere has come back into equilibrium – none of these have much meaning in a world without convection).

Let’s also look at the “standard case” of an increase from pre-industrial CO2 of 280 ppm to a doubling of 560 ppm. I ran this one for longer – 1000 days before doubling CO2 and 2000 days in total- because the starting point was less in balance. At the start, the TOA flux (outgoing longwave radiation) = 248 W/m². This means the climate was cooling quite a bit with the starting point we gave it.

At 180 ppm CO2, 1775 ppb CH4, 319 ppb N2O and 50% relative humidity (set at the starting point of 288K and 6.5K/km lapse rate), the surface temperature after 1,000 days = 323.9 K. At this point the TOA flux was 240.0 W/m². So overall the climate has cooled from its initial starting point but the surface is hotter.

This might seem surprising at first sight – the climate cools but the surface heats up? It’s simply that the “radiation-only” atmosphere has made it much harder for heat to get out. So the temperature drop per km of height is now much greater than it is in a convection atmosphere. Remember that we started with a temperature profile of 6.5K/km – a typical convection atmosphere.

After CO2 doubles to 560 ppm (and all other factors stay the same, including absolute humidity), the immediate effect is the TOA flux drops to 221 W/m² (once again a radiative forcing of about 19 W/m²). This is because the atmosphere is now even more “resistant” to the escape of heat by radiation. The atmosphere is more opaque and so the average emission of radiation of space moves to a higher and colder part of the atmosphere. Colder parts of the atmosphere emit less radiation than warmer parts of the atmosphere.

After the climate moves back into balance – a TOA flux of 240 W/m² – the surface temperature = 327.0 K – an increase (pre-feedback) of 3.1 K.

Compare this with the standard IPCC “with convection” no-feedback forcing of 3.7 W/m² and a “no feedback” temperature rise of about 1.2 K.

Temp-profile-no-convection-280-560ppm-CO2-40-levels-50%RH

Figure 7 – with CO2 doubled instantaneously from 280ppm at 1000 days

Then I introduced a more realistic model with solar absorption by water vapor in the atmosphere (changed parameter ‘solaratm’ in the Matlab program from ‘false’ to ‘true’). Unfortunately this part of the radiative transfer program is not done by radiative transfer, only by a very crude parameterization, just to get roughly the right amount of heating by solar radiation in roughly the right parts of the atmosphere.

The equilibrium surface temperature at 280 ppm CO2 was now “only” 302.7 K (almost 30ºC). Doubling CO2 to 560 ppm created a radiative forcing of 11 W/m², and a final surface temperature of 305.5K – that is, an increase of 2.8K.

Why is the surface temperature lower? Because in the “no solar absorption in the atmosphere” model, all of the solar radiation is absorbed by the ground and has to “fight its way out” from the surface up. Once you absorb solar radiation higher up than the surface, it’s easier for this heat to get out.

Conclusion

One of the common themes of fantasy climate blogs is that the results of radiative physics are invalidated by convection, which “short-circuits” radiation in the troposphere. No one in climate science is confused about the fact that convection dominates heat transfer in the lower atmosphere.

We can see in this set of calculations that when we have a radiation-only atmosphere the surface temperature is a lot higher than any current climate – at least when we consider a “one-dimensional” climate.

Of course, the whole world would be different and there are many questions about the amount of water vapor and the effect of circulation (or lack of it) on moving heat around the surface of the planet via the atmosphere and the ocean.

When we double CO2 from its pre-industrial value the radiative forcing is much greater in a “radiation-only atmosphere” than in a “radiative-convective atmosphere”, with the pre-feedback temperature rise 3ºC vs 1ºC.

So it is definitely true that convection short-circuits radiation in the troposphere. But the whole climate system can only gain and lose energy by radiation and this radiation balance still has to be calculated. That’s what current climate models do.

It’s often stated as a kind of major simplification (a “teaching model”) that with increases in GHGs the “average height of emission” moves up, and therefore the emission is from a colder part of the atmosphere. This idea is explained in more detail and less simplifications in Visualizing Atmospheric Radiation – Part Three – Average Height of Emission – the complex subject of where the TOA radiation originated from, what is the “Average Height of Emission” and other questions.

A legitimate criticism of current atmospheric physics is that convection is poorly understood in contrast to subjects like radiation. This is true. And everyone knows it. But it’s not true to say that convection is ignored. And it’s not true to say that because “convection short-circuits radiation” in the troposphere that somehow more GHGs will have no effect.

On the other hand I don’t want to suggest that because more GHGs in the atmosphere mean that there is a “pre-feedback” temperature rise of about 1K, that somehow the problem is all nicely solved. On the contrary, climate is very complicated. Radiation is very simple by comparison.

All the standard radiative-convective calculation says is: “all other things being equal, an doubling of CO2 from pre-industrial levels, would lead to a 1K increase in surface temperature”

All other things are not equal. But the complication is not that somehow atmospheric physics has just missed out convection. Hilarious. Of course, I realize most people learn their criticisms of climate science from people who have never read a textbook on the subject. Surprisingly, this doesn’t lead to quality criticism..

On more complexity  – I was also interested to see what happens if we readjust absolute humidity due to the significant temperature changes, i.e. we keep relative humidity constant. This led to some surprising results, so I will post them in a followup article.

Notes

Note 1 – The boundary conditions are important if you want to understand radiative heat transfer in the atmosphere.

First of all, the downward longwave radiation at TOA (top of atmosphere) = 0. Why? Because there is no “longwave”, i.e., terrestrial radiation, from outside the climate system. So at the top of the atmosphere the downward flux = 0. As we move down through the atmosphere the flux gradually increases. This is because the atmosphere emits radiation. We can divide up the atmosphere into fictitious “layers”. This is how all numerical (finite element analysis) programs actually work. Each layer emits and each layer also absorbs. The balance depends on the temperature of the source radiation vs the temperature of the layer of the atmosphere we are considering.

At the bottom of the atmosphere, i.e., at the surface, the upwards longwave radiation is the surface emission. This emission is given by the Stefan-Boltzmann equation with an emissivity of 1.0 if we consider the surface as a blackbody which is a reasonable approximation for most surface types – for more on this, see Visualizing Atmospheric Radiation – Part Thirteen – Surface Emissivity – what happens when the earth’s surface is not a black body – useful to understand seeing as it isn’t..

At TOA, the upwards emission needs to equal the absorbed solar radiation, otherwise the climate system has an imbalance – either cooling or warming.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 306 other followers