Feeds:
Posts
Comments

Archive for the ‘Climate History’ Category

The subject of EMICs – Earth Models of Intermediate Complexity – came up in recent comments on Ghosts of Climates Past – Eleven – End of the Last Ice age. I promised to write something about EMICs, in part because of my memory of a more recent paper on EMICs. This article will just be short as I found that I have already covered some of the EMIC ground.

In the previous 19 articles of this series we’ve seen a concise summary (just kidding) of the problems of modeling ice ages. That is, it is hard to model ice ages for at least three reasons:

  • knowledge of the past is hard to come by, relying on proxies which have dating uncertainties and multiple variables being expressed in one proxy (so are we measuring temperature, or a combination of temperature and other variables?)
  • computing resources make it impossible to run a GCM at current high resolution for the 100,000 years necessary, let alone to run ensembles with varying external forcings and varying parameters (internal physics)
  • lack of knowledge of key physics, specifically: ice sheet dynamics with very non-linear behavior; and the relationship between CO2, methane and the ice age cycles

The usual approach using GCMs is to have some combination of lower resolution grids, “faster” time and prescribed ice sheets and greenhouse gases.

These articles cover the subject:

Part Seven – GCM I – early work with climate models to try and get “perennial snow cover” at high latitudes to start an ice age around 116,000 years ago

Part Eight – GCM II – more recent work from the “noughties” – GCM results plus EMIC (earth models of intermediate complexity) again trying to produce perennial snow cover

Part Nine – GCM III – very recent work from 2012, a full GCM, with reduced spatial resolution and speeding up external forcings by a factors of 10, modeling the last 120 kyrs

Part Ten – GCM IV – very recent work from 2012, a high resolution GCM called CCSM4, producing glacial inception at 115 kyrs

One of the the papers I thought about covering in this article (Calov et al 2005) is already briefly covered in Part Eight. I would like to highlight one comment I made in the conclusion of Part Ten:

What the paper [Jochum et al, 2012] also reveals – in conjunction with what we have seen from earlier articles – is that as we move through generations and complexities of models we can get success, then a better model produces failure, then a better model again produces success. Also we noted that whereas the 2003 model (also cold-biased) of Vettoretti & Peltier found perennial snow cover through increased moisture transport into the critical region (which they describe as an “atmospheric–cryospheric feedback mechanism”), this more recent study with a better model found no increase in moisture transport.

So, onto a little more about EMICs.

There are two papers from 2000/2001 describing the CLIMBER-2 model and the results from sensitivity experiments. These are by the same set of authors – Petoukhov et al 2000 & Ganopolski et al 2001 (see references).

Here is the grid:

From Petoukhov et al (2000)

From Petoukhov et al (2000)

The CLIMBER-2 model has a low spatial resolution which only resolves individual continents (subcontinents) and ocean basins (fig 1). Latitudinal resolutions is the same for all modules (10º). In the longitudinal direction the Earth is represented by seven equal sectors (roughly 51º􏰖 longitude) in the atmosphere and land modules.

The ocean model is a zonally averaged multibasin model, which in longitudinal direction resolves only three ocean basins Atlantic, Indian, Pacific). Each ocean grid cell communicates with either one, two or three atmosphere grid cells, depending on the width of the ocean basin. Very schematic orography and bathymetry are prescribed in the model, to represent the Tibetan plateau, the high Antarctic elevation and the presence of the Greenland-Scotland sill in the Atlantic ocean.

The atmospheric model has a simplified approach, leading to the description 2.5D model. The time step can be relaxed to about 1 day per step. The ocean grid is a little finer in latitude.

On selecting parameters and model “tuning”:

Careful tuning is essential for a new model, as some parameter values are not known a priori and incorrect choices of parameter values compromise the quality and reliability of simulations. At the same time tuning can be abused (getting the right results for the wrong reasons) if there are too many free parameters. To avoid this we adhered to a set of common-sense rules for good tuning practice:

1. Parameters which are known empirically or from theory must not be used for tuning.

2. Where ever possible parametrizations should be tuned separately against observed data, not in the context of the whole model. (Most of the parameters values in Table 1 were obtained in this way and only few of them were determined by tuning the model to the observed climate).

3. Parameters must relate to physical processes, not to specific geographic regions (hidden flux adjustments).

4. The number of tuning parameters must be much smaller than the degrees of freedom predicted by the model. (In our case the predicted degrees of freedom exceed the number of tuning parameters by several orders of magnitude).

To apply the coupled climate model for simulations of climates substantially different from the present, it is crucial to avoid any type of ̄flux adjustment. One of the reasons for the need of ̄flux adjustments in many general circulation models is their high computational cost, which makes optimal tuning􏱃 difficult. The high speed of CLIMBER-2 allows us to perform many sensitivity experiments required to identify the physical reasons for model problems and the best parameter choices. A physically correct choice of model parameters is fundamentally different from a flux adjustment; only in the former case the surface fluxes are part of the proper feedbacks when the climate changes.

Note that many GCMs back in 2000 did need to use flux adjustment (in Natural Variability and Chaos – Three – Attribution & Fingerprints I commented “..The climate models “drifted”, unless, in deity-like form, you topped up (or took out) heat and momentum from various grid boxes..)

So this all sounds reasonable. Obviously it is a model with less resolution than a GCM, and even the high resolution (by current standards) GCMs need some kind of approach to parameter selection (see Models, On – and Off – the Catwalk – Part Four – Tuning & the Magic Behind the Scenes).

What I remembered about EMICs and suggested in my comment was based on this 2010 paper by Ganopolski, Calov & Claussen:

We will start the discussion of modelling results with a so-called Baseline Experiment (BE). This experiment represents a “suboptimal” subjective tuning of the model parameters to achieve the best agreement between modelling results and palaeoclimate data. Obviously, even with a model of intermediate complexity it is not possible to test all possible combinations of important model parameters which can be considered as free (tunable) parameters.

In fact, the BE was selected from hundred model simulations of the last glacial cycle with different combinations of key model parameters.

Note, that we consider “tunable” parameters only for the ice-sheet model and the SEMI interface, while the utilized climate component of CLIMBER-2 is the same in previous studies, such as those used by C05 [this is Calov et al. (2005)]. In the next section, we will discuss the results of a set of sensitivity experiments, which show that our modelling results are rather sensitive to the choice of the model parameters..

..The ice sheet model and the ice sheet-climate interface contain a number of parameters which are not derived from first principles. They can be considered as “tunable” parameters. As stated above, the BE was subjectively selected from a large suite of experiments as the best fit to empirical data. Below we will discuss results of a number of additional experiments illustrating the sensitivity of simulated glacial cycle to several model parameters. These results show that the model is rather sensitive to a number of poorly constrained parameters and parameterisations, demonstrating the challenges to realistic simulations of glacial cycles with a comprehensive Earth system model.

And in their conclusion:

Our experiments demonstrate that the CLIMBER-2 model with an appropriate choice of model parameters simulates the major aspects of the last glacial cycle under orbital and greenhouse gases forcing rather realistically. In the simulations, the glacial cycle begins with a relatively abrupt lateral expansion of the North American ice sheets and parallel growth of the smaller northern European ice sheets. During the initial phase of the glacial cycle (MIS 5), the ice sheets experience large variations on precessional time scales. Later on, due to a decrease in the magnitude of the precessional cycle and a stabilising effect of low CO2 concentration, the ice sheets remain large and grow consistently before reaching their maximum at around 20 kyr BP..

..From about 19 kyr BP, the ice sheets start to retreat with a maximum rate of sea level rise reaching some 15 m per 1000 years around 15kyrBP. The northern European ice sheets disappeared first, and the North American ice sheets completely disappeared at around 7 kyr BP. Fast sliding processes and the reduction of surface albedo due to deposition of dust play an important role in rapid deglaciation of the NH. Thus our results strongly support the idea about important role of aeolian dust in the termination of glacial cycles proposed earlier by Peltier and Marshall (1995)..

..Results from a set of sensitivity experiments demonstrate high sensitivity of simulated glacial cycle to the choice of some modelling parameters, and thus indicate the challenge to perform realistic simulations of glacial cycles with the computationally expensive models.

My summary – the simplifications of the EMIC combined with the “trying lots of parameters” approach means I have trouble putting much significance on the results.

While the basic setup, as described in the 2000 & 2001 papers seems reasonable, EMICs miss a lot of physics. This is important with something like starting and ending an ice age, where the feedbacks in higher resolution models can significantly reduce the effect seen by lower resolution models. When we run 100’s of simulations with different parameters (relating to the ice sheet) and find the best result I wonder what we’ve actually found.

That doesn’t mean they are of no value. Models help us to understand how the physics of climate actually works, because we can’t do these calculations in our heads. GCMs require too much computing resources to properly study ice ages.

So I look at EMICs as giving some useful insights that need to be validated with more complex models. Or with further study against other observations (what predictions do these parameter selections give us that can be verified?)

I don’t see them as demonstrating that the results “show” we’ve now modeled ice ages. The exact same comment also goes for another 2007 paper which used a GCM coupled to an ice sheet model that we covered in Part Nineteen – Ice Sheet Models I. An update of that paper in 2013 came with a excited Nature press release but to me simply demonstrates that with a few unknown parameters you can get a good result with some specific values of those parameters. This is not at all surprising. Let’s call it a good start.

Perhaps Abe Ouchi et al 2013 was the paper that will be verified as the answer to the question of ice age terminations – the delayed isostatic rebound.

Perhaps Ganopolski, Calov & Claussen 2010 with the interaction of dust on ice sheets will be verified as the answer to that question.

Perhaps neither will be.

Articles in this Series

Part One – An introduction

Part Two – Lorenz – one point of view from the exceptional E.N. Lorenz

Part Three – Hays, Imbrie & Shackleton – how everyone got onto the Milankovitch theory

Part Four – Understanding Orbits, Seasons and Stuff – how the wobbles and movements of the earth’s orbit affect incoming solar radiation

Part Five – Obliquity & Precession Changes – and in a bit more detail

Part Six – “Hypotheses Abound” – lots of different theories that confusingly go by the same name

Part Seven – GCM I – early work with climate models to try and get “perennial snow cover” at high latitudes to start an ice age around 116,000 years ago

Part Seven and a Half – Mindmap – my mind map at that time, with many of the papers I have been reviewing and categorizing plus key extracts from those papers

Part Eight – GCM II – more recent work from the “noughties” – GCM results plus EMIC (earth models of intermediate complexity) again trying to produce perennial snow cover

Part Nine – GCM III – very recent work from 2012, a full GCM, with reduced spatial resolution and speeding up external forcings by a factors of 10, modeling the last 120 kyrs

Part Ten – GCM IV – very recent work from 2012, a high resolution GCM called CCSM4, producing glacial inception at 115 kyrs

Pop Quiz: End of An Ice Age – a chance for people to test their ideas about whether solar insolation is the factor that ended the last ice age

Eleven – End of the Last Ice age – latest data showing relationship between Southern Hemisphere temperatures, global temperatures and CO2

Twelve – GCM V – Ice Age Termination – very recent work from He et al 2013, using a high resolution GCM (CCSM3) to analyze the end of the last ice age and the complex link between Antarctic and Greenland

Thirteen – Terminator II – looking at the date of Termination II, the end of the penultimate ice age – and implications for the cause of Termination II

Fourteen – Concepts & HD Data – getting a conceptual feel for the impacts of obliquity and precession, and some ice age datasets in high resolution

Fifteen – Roe vs Huybers – reviewing In Defence of Milankovitch, by Gerard Roe

Sixteen – Roe vs Huybers II – remapping a deep ocean core dataset and updating the previous article

Seventeen – Proxies under Water I – explaining the isotopic proxies and what they actually measure

Eighteen – “Probably Nonlinearity” of Unknown Origin – what is believed and what is put forward as evidence for the theory that ice age terminations were caused by orbital changes

Nineteen – Ice Sheet Models I – looking at the state of ice sheet models

References

CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate, V Petoukhov, A Ganopolski, V Brovkin, M Claussen, A Eliseev, C Kubatzki & S Rahmstorf, Climate Dynamics (2000)

CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity, A Ganopolski, V Petoukhov, S Rahmstorf, V Brovkin, M Claussen, A Eliseev & C Kubatzki, Climate Dynamics 􏱄(2001)

Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system, Reinhard Calov, Andrey Ganopolski, Martin Claussen, Vladimir Petoukhov & Ralf Greve, Climate Dynamics (2005)

Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, A. Ganopolski, R. Calov, and M. Claussen, Climate of the Past (2010)

Read Full Post »

In one stereotypical view of climate, the climate state has some variability over a 30 year period – we could call this multi-decadal variability “noise” – but it is otherwise fixed by the external conditions, the “external forcings”.

This doesn’t really match up with climate history, but climate models have mostly struggled to do much more than reproduce the stereotyped view. See Natural Variability and Chaos – Four – The Thirty Year Myth for a different perspective on (only) the timescale.

In this stereotypical view, the only reason why “long term” (=30 year statistics) can change is because of “external forcing”. Otherwise, where does the “extra energy” come from (we will examine this particular idea in a future article).

One of our commenters recently highlighted a paper from Drijfhout et al (2013) –Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation.

Here is how the paper introduces the subject:

Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing.

Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high- resolution climate model, without imposing external perturbations.

This is interesting and instructive on many levels so let’s take a look. In later articles we will look at the evidence in climate history for “abrupt” events, for now note that Dansgaard–Oeschger (DO) events are the description of the originally identified form of abrupt change.

The distinction between “abrupt” changes and change that is not “abrupt” is an artificial one, it is more a reflection of the historical order in which we discovered “slow” and “abrupt” change. 

Under a Significance inset box in the paper:

There is a long-standing debate about whether climate models are able to simulate large, abrupt events that characterized past climates. Here, we document a large, spontaneously occurring cold event in a preindustrial control run of a new climate model.

The event is comparable to the Little Ice Age both in amplitude and duration; it is abrupt in its onset and termination, and it is characterized by a long period in which the atmospheric circulation over the North Atlantic is locked into a state with enhanced blocking.

To simulate this type of abrupt climate change, climate models should possess sufficient resolution to correctly represent atmospheric blocking and a sufficiently sensitive sea-ice model.

Here is their graph of the time-series of temperature (left) , and the geographical anomaly (right) expressed as the change during the 100 year event against the background of years 200-400:

From Drijfhout et al 2013

From Drijfhout et al 2013

Figure 1 – Click to expand

In their summary they state:

The lesson learned from this study is that the climate system is capable of generating large, abrupt climate excursions without externally imposed perturbations. Also, because such episodic events occur spontaneously, they may have limited predictability.

Before we look at the “causes” – the climate mechanisms – of this event, let’s briefly look at the climate model.

Their coupled GCM has an atmospheric resolution of just over 1º x 1º with 62 vertical levels, and the ocean has a resolution of 1º in the extra-tropics, increasing to 0.3º near the equator. The ocean has 42 vertical levels, with the top 200m of the ocean represented by 20 equally spaced 10m levels.

The GHGs and aerosols are set at pre-industrial 1860 values and don’t change over the 1,125 year simulation. There are no “flux adjustments” (no need for artificial momentum and energy additions to keep the model stable as with many older models).

See note 1 for a fuller description and the paper in the references for a full description.

The simulated event itself:

After 450 y, an abrupt cooling event occurred, with a clear signal in the Atlantic multidecadal oscillation (AMO). In the instrumental record, the amplitude of the AMO since the 1850s is about 0.4 °C, its SD 0.2 °C. During the event simulated here, the AMO index dropped by 0.8 °C for about a century..

How did this abrupt change take place?

The main mechanism was a change in the Atlantic Meridional Overturning Current (AMOC), also known as the Thermohaline circulation. The AMOC raises a nice example of the sensitivity of climate. The AMOC brings warmer water from the tropics into higher latitudes. A necessary driver of this process is the intensity of deep convection in high latitudes (sinking dense water) which in turn depends on two factors – temperature and salinity. More importantly, more accurately, it depends on the competing differences in anomalies of temperature and salinity

To shut down deep convection, the density of the surface water must decrease. In the temperature range of 7–12 °C, typical for the Labrador Sea, the SST anomaly in degrees Celsius has to be roughly 5 times the sea surface salinity (SSS) anomaly in practical salinity units for density compensation to occur. The SST anomaly was only about twice that of the SSS anomaly; the density anomaly was therefore mostly determined by the salinity anomaly.

In the figure below we see (left) the AMOC time series at two locations with the reduction during the cold century, and (right) the anomaly by depth and latitude for the “cold century” vs the climatology for years 200-400:

From Drijfhout et al 2013

From Drijfhout et al 2013

Figure 2 – Click to expand

What caused the lower salinities? It was more sea ice, melting in the right location. The excess sea ice was caused by positive feedback between atmospheric and ocean conditions “locking in” a particular pattern. The paper has a detailed explanation with graphics of the pressure anomalies which is hard to reduce to anything more succinct, apart from their abstract:

Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre.

In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland.

The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70°N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea.

Conclusion

It is fascinating to see a climate model reproducing an example of abrupt climate change. There are a few contexts to suggest for this result.

1. From the context of timescale we could ask how often these events take place, or what pre-conditions are necessary. The only way to gather meaningful statistics is for large ensemble runs of considerable length – perhaps thousands of “perturbed physics” runs each of 100,000 years length. This is far out of reach for processing power at the moment. I picked some arbitrary numbers – until the statistics start to converge and match what we see from paleoclimatology studies we don’t know if we have covered the “terrain”.

Or perhaps only five runs of 1,000 years are needed to completely solve the problem (I’m kidding).

2. From the context of resolution – as we achieve higher resolution in models we may find new phenomena emerging in climate models that did not appear before. For example, in ice age studies, coarser climate models could not achieve “perennial snow cover” at high latitudes (as a pre-condition for ice age inception), but higher resolution climate models have achieved this first step. (See Ghosts of Climates Past – Part Seven – GCM I & Part Eight – GCM II).

As a comparison on resolution, the 2,000 year El Nino study we saw in Part Six of this series had an atmospheric resolution of 2.5º x 2.0º with 24 levels.

However, we might also find that as the resolution progressively increases (with the inevitable march of processing power) phenomena that appear at one resolution disappear at yet higher resolutions. This is an opinion, but if you ask people who have experience with computational fluid dynamics I expect they will say this would not be surprising.

3. Other models might reach similar or higher resolution and never get this kind of result and demonstrate the flaw in the EC-Earth model that allowed this “Little Ice Age” result to occur. Or the reverse.

As the authors say:

As a result, only coupled climate models that are capable of realistically simulating atmospheric blocking in relation to sea-ice variations feature the enhanced sensitivity to internal fluctuations that may temporarily drive the climate system to a state that is far beyond its standard range of natural variability.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation, Sybren Drijfhout, Emily Gleeson, Henk A. Dijkstra & Valerie Livina, PNAS (2013) – free paper

EC-Earth V2.2: description and validation of a new seamless earth system prediction model, W. Hazeleger et al, Climate dynamics (2012) – free paper

Notes

Note 1: From the Supporting Information from their paper:

Climate Model and Numerical Simulation. The climate model used in this study is version 2.2 of the EC-Earth earth system model [see references] whose atmospheric component is based on cycle 31r1 of the European Centre for Medium-range Weather Forecasts (ECMWF) Integrated Forecasting System.

The atmospheric component runs at T159 horizontal spectral resolution (roughly 1.125°) and has 62 vertical levels. In the vertical a terrain-following mixed σ/pressure coordinate is used.

The Nucleus for European Modeling of the Ocean (NEMO), version V2, running in a tripolar configuration with a horizontal resolution of nominally 1° and equatorial refinement to 0.3° (2) is used for the ocean component of EC-Earth.

Vertical mixing is achieved by a turbulent kinetic energy scheme. The vertical z coordinate features a partial step implementation, and a bottom boundary scheme mixes dense water down bottom slopes. Tracer advection is accomplished by a positive definite scheme, which does not produce spurious negative values.

The model does not resolve eddies, but eddy-induced tracer advection is parameterized (3). The ocean is divided into 42 vertical levels, spaced by ∼10 m in the upper 200 m, and thereafter increasing with depth. NEMO incorporates the Louvain-la-Neuve sea-ice model LIM2 (4), which uses the same grid as the ocean model. LIM2 treats sea ice as a 2D viscous-plastic continuum that transmits stresses between the ocean and atmosphere. Thermodynamically it consists of a snow and an ice layer.

Heat storage, heat conduction, snow–ice transformation, nonuniform snow and ice distributions, and albedo are accounted for by subgrid-scale parameterizations.

The ocean, ice, land, and atmosphere are coupled through the Ocean, Atmosphere, Sea Ice, Soil 3 coupler (5). No flux adjustments are applied to the model, resulting in a physical consistency between surface fluxes and meridional transports.

The present preindustrial (PI) run was conducted by Met Éireann and comprised 1,125 y. The ocean was initialized from the World Ocean Atlas 2001 climatology (6). The atmosphere used the 40-year ECMWF Re-Analysis of January 1, 1979, as the initial state with permanent PI (1850) greenhouse gas (280 ppm) and aerosol concentrations.

Read Full Post »

In Part Three – Attribution & Fingerprints we looked at an early paper in this field, from 1996. I was led there by following back through many papers referenced from AR5 Chapter 10. The lead author of that paper, Gabriele Hegerl, has made a significant contribution to the 3rd report, 4th and 5th IPCC reports on attribution.

We saw in Part Three that this particular paper ascribed a probability:

We find that the latest observed 30-year trend pattern of near-surface temperature change can be distinguished from all estimates of natural climate variability with an estimated risk of less than 2.5% if the optimal fingerprint is applied.

That paper did note that greatest uncertainty was in understanding the magnitude of natural variability. This is an essential element of attribution.

It wasn’t explicitly stated whether the 97.5% confidence was with the premise that natural variability was accurately understood in 1996. I believe that this was the premise. I don’t know what confidence would have been ascribed to the attribution study if uncertainty over natural variability was included.

IPCC AR5

In this article we will look at the IPCC 5th report, AR5, and see how this field has progressed, specifically in regard to the understanding of natural variability. Chapter 10 covers Detection and Attribution of Climate Change.

From p.881 (the page numbers are from the start of the whole report, chapter 10 has just over 60 pages plus references):

Since the AR4, detection and attribution studies have been carried out using new model simulations with more realistic forcings, and new observational data sets with improved representation of uncertainty (Christidis et al., 2010; Jones et al., 2011, 2013; Gillett et al., 2012, 2013; Stott and Jones, 2012; Knutson et al., 2013; Ribes and Terray, 2013).

Let’s have a look at these papers (see note 1 on CMIP3 & CMIP5).

I had trouble understanding AR5 Chapter 10 because there was no explicit discussion of natural variability. The papers referenced (usually) have their own section on natural variability, but chapter 10 doesn’t actually cover it.

I emailed Geert Jan van Oldenborgh to ask for help. He is the author of one paper we will briefly look at here – his paper was very interesting and he had a video segment explaining his paper. He suggested the problem was more about communication because natural variability was covered in chapter 9 on models. He had written a section in chapter 11 that he pointed me towards, so this article became something that tried to grasp the essence of three chapters (9 – 11), over 200 pages of reports and several pallet loads of papers.

So I’m not sure I can do the synthesis justice, but what I will endeavor to do in this article is demonstrate the minimal focus (in IPCC AR5) on how well models represent natural variability.

That subject deserves a lot more attention, so this article will be less about what natural variability is, and more about how little focus it gets in AR5. I only arrived here because I was determined to understand “fingerprints” and especially the rationale behind the certainties ascribed.

Subsequent articles will continue the discussion on natural variability.

Knutson et al 2013

The models [CMIP5] are found to provide plausible representations of internal climate variability, although there is room for improvement..

..The modeled internal climate variability from long control runs is used to determine whether observed and simulated trends are consistent or inconsistent. In other words, we assess whether observed and simulated forced trends are more extreme than those that might be expected from random sampling of internal climate variability.

Later

The model control runs exhibit long-term drifts. The magnitudes of these drifts tend to be larger in the CMIP3 control runs than in the CMIP5 control runs, although there are exceptions. We assume that these drifts are due to the models not being in equilibrium with the control run forcing, and we remove the drifts by a linear trend analysis (depicted by the orange straight lines in Fig. 1). In some CMIP3 cases, the drift initially proceeds at one rate, but then the trend becomes smaller for the remainder of the run. We approximate the drift in these cases by two separate linear trend segments, which are identified in the figure by the short vertical orange line segments. These long-term drift trends are removed to produce the drift corrected series.

[Emphasis added].

Another paper suggests this assumption might not be correct. Here is Jones, Stott and Christidis (2013) – “piControl” are the natural variability model simulations:

Often a model simulation with no changes in external forcing (piControl) will have a drift in the climate diagnostics due to various flux imbalances in the model [Gupta et al., 2012]. Some studies attempt to account for possible model climate drifts, for instance Figure 9.5 in Hegerl et al. [2007] did not include transient simulations of the 20th century if the long-term trend of the piControl was greater in magnitude than 0.2 K/century (Appendix 9.C in Hegerl et al. [2007]).

Another technique is to remove the trend, from the transient simulations, deduced from a parallel section of piControl [e.g., Knutson et al., 2006]. However whether one should always remove the piControl trend, and how to do it in practice, is not a trivial issue [Taylor et al., 2012; Gupta et al., 2012]..

..We choose not to remove the trend from the piControl from parallel simulations of the same model in this study due to the impact it would have on long-term variability, i.e., the possibility that part of the trend in the piControl may be long-term internal variability that may or may not happen in a parallel experiment when additional forcing has been applied.

Here are further comments from Knutson et al 2013:

Five of the 24 CMIP3 models, identified by “(-)” in Fig. 1, were not used, or practically not used, beyond Fig. 1 in our analysis. For instance, the IAP_fgoals1.0.g model has a strong discontinuity near year 200 of the control run. We judge this as likely an artifact due to some problem with the model simulation, and we therefore chose to exclude this model from further analysis

From Knutson et al 2013

From Knutson et al 2013

Figure 1

Perhaps this is correct. Or perhaps the jump in simulated temperature is the climate model capturing natural climate variability.

The authors do comment:

As noted by Wittenberg (2009) and Vecchi and Wittenberg (2010), long-running control runs suggest that internally generated SST variability, at least in the ENSO region, can vary substantially between different 100-yr periods (approximately the length of record used here for observations), which again emphasizes the caution that must be placed on comparisons of modeled vs. observed internal variability based on records of relatively limited duration.

The first paper referenced, Wittenberg 2009, was the paper we looked at in Part Six – El Nino.

So is the “caution” that comes from that study included in the probability of our models ability to simulate natural variability?

In reality, questions about internal variability are not really discussed. Trends are removed, models with discontinuities are artifacts. What is left? This paper essentially takes the modeling output from the CMIP3 and CMIP5 archives (with and without GHG forcing) as a given and applies some tests.

Ribes & Terray 2013

This was a “Part II” paper and they said:

We use the same estimates of internal variability as in Ribes et al. 2013 [the “Part I”].

These are based on intra-ensemble variability from the above CMIP5 experiments as well as pre-industrial simulations from both the CMIP3 and CMIP5 archives, leading to a much larger sample than previously used (see Ribes et al. 2013 for details about ensembles). We then implicitly assume that the multi-model internal variability estimate is reliable.

[Emphasis added]. The Part I paper said:

An estimate of internal climate variability is required in detection and attribution analysis, for both optimal estimation of the scaling factors and uncertainty analysis.

Estimates of internal variability are usually based on climate simulations, which may be control simulations (i.e. in the present case, simulations with no variations in external forcings), or ensembles of simulations with the same prescribed external forcings.

In the latter case, m – 1 independent realisations of pure internal variability may be obtained by subtracting the ensemble mean from each member (assuming again additivity of the responses) and rescaling the result by a factor √(m/(m-1)) , where m denotes the number of members in the ensemble.

Note that estimation of internal variability usually means estimation of the covariance matrix of a spatio-temporal climate-vector, the dimension of this matrix potentially being high. We choose to use a multi-model estimate of internal climate variability, derived from a large ensemble of climate models and simulations. This multi-model estimate is subject to lower sampling variability and better represents the effects of model uncertainty on the estimate of internal variability than individual model estimates. We then simultaneously consider control simulations from the CMIP3 and CMIP5 archives, and ensembles of historical simulations (including simulations with individual sets of forcings) from the CMIP5 archive.

All control simulations longer than 220 years (i.e. twice the length of our study period) and all ensembles (at least 2 members) are used. The overall drift of control simulations is removed by subtracting a linear trend over the full period.. We then implicitly assume that this multi- model internal variability estimate is reliable.

[Emphasis added]. So two approaches to evaluate internal variability – one approach uses GCM runs with no GHG forcing; and the other approach uses the variation between different runs of the same model (with GHG forcing) to estimate natural variability. Drift is removed as “an error”.

Chapter 10 on Spatial Trends

The IPCC report also reviews the spatial simulations compared with spatial observations, p. 880:

Figure 10.2a shows the pattern of annual mean surface temperature trends observed over the period 1901–2010, based on Hadley Centre/ Climatic Research Unit gridded surface temperature data set 4 (Had- CRUT4). Warming has been observed at almost all locations with sufficient observations available since 1901.

Rates of warming are generally higher over land areas compared to oceans, as is also apparent over the 1951–2010 period (Figure 10.2c), which simulations indicate is due mainly to differences in local feedbacks and a net anomalous heat transport from oceans to land under GHG forcing, rather than differences in thermal inertia (e.g., Boer, 2011). Figure 10.2e demonstrates that a similar pattern of warming is simulated in the CMIP5 simulations with natural and anthropogenic forcing over the 1901–2010 period. Over most regions, observed trends fall between the 5th and 95th percentiles of simulated trends, and van Oldenborgh et al. (2013) find that over the 1950–2011 period the pattern of observed grid cell trends agrees with CMIP5 simulated trends to within a combination of model spread and internal variability..

van Oldenborgh et al (2013)

Let’s take a look at van Oldenborgh et al (2013).

There’s a nice video of (I assume) the lead author talking about the paper and comparing the probabilistic approach used in weather forecasts with that of climate models (see Ensemble Forecasting). I recommend the video for a good introduction to the topic of ensemble forecasting.

With weather forecasting the probability comes from running ensembles of weather models and seeing, for example, how many simulations predict rain vs how many do not. The proportion is the probability of rain. With weather forecasting we can continually review how well the probabilities given by ensembles match the reality. Over time we will build up a set of statistics of “probability of rain” and compare with the frequency of actual rainfall. It’s pretty easy to see if the models are over-confident or under-confident.

Here is what the authors say about the problem and how they approached it:

The ensemble is considered to be an estimate of the probability density function (PDF) of a climate forecast. This is the method used in weather and seasonal forecasting (Palmer et al 2008). Just like in these fields it is vital to verify that the resulting forecasts are reliable in the definition that the forecast probability should be equal to the observed probability (Joliffe and Stephenson 2011).

If outcomes in the tail of the PDF occur more (less) frequently than forecast the system is overconfident (underconfident): the ensemble spread is not large enough (too large).

In contrast to weather and seasonal forecasts, there is no set of hindcasts to ascertain the reliability of past climate trends per region. We therefore perform the verification study spatially, comparing the forecast and observed trends over the Earth. Climate change is now so strong that the effects can be observed locally in many regions of the world, making a verification study on the trends feasible. Spatial reliability does not imply temporal reliability, but unreliability does imply that at least in some areas the forecasts are unreliable in time as well. In the remainder of this letter we use the word ‘reliability’ to indicate spatial reliability.

[Emphasis added]. The paper first shows the result for one location, the Netherlands, with the spread of model results vs the actual result from 1950-2011:

from van Oldenborgh et al 2013

from van Oldenborgh et al 2013

Figure 2

We can see that the models are overall mostly below the observation. But this is one data point. So if we compared all of the datapoints – and this is on a grid of 2.5º – how do the model spreads compare with the results? Are observations above 95% of the model results only 5% of the time? Or more than 5% of the time? And are observations below 5% of the model results only 5% of the time?

We can see that the frequency of observations in the bottom 5% of model results is about 13% and the frequency of observations in the top 5% of model results is about 20%. Therefore the models are “overconfident” in spatial representation of the last 60 year trends:

van Oldenborgh-2013-fig3

From van Oldenborgh et al 2013

Figure 3

We investigated the reliability of trends in the CMIP5 multi-model ensemble prepared for the IPCC AR5. In agreement with earlier studies using the older CMIP3 ensemble, the temperature trends are found to be locally reliable. However, this is due to the differing global mean climate response rather than a correct representation of the spatial variability of the climate change signal up to now: when normalized by the global mean temperature the ensemble is overconfident. This agrees with results of Sakaguchi et al (2012) that the spatial variability in the pattern of warming is too small. The precipitation trends are also overconfident. There are large areas where trends in both observational dataset are (almost) outside the CMIP5 ensemble, leading us to conclude that this is unlikely due to faulty observations.

It’s probably important to note that the author comments in the video “on the larger scale the models are not doing so badly”.

It’s an interesting paper. I’m not clear whether the brief note in AR5 reflects the paper’s conclusions.

Jones et al 2013

It was reassuring to finally find a statement that confirmed what seemed obvious from the “omissions”:

A basic assumption of the optimal detection analysis is that the estimate of internal variability used is comparable with the real world’s internal variability.

Surely I can’t be the only one reading Chapter 10 and trying to understand the assumptions built into the “with 95% confidence” result. If Chapter 10 is only aimed at climate scientists who work in the field of attribution and detection it is probably fine not to actually mention this minor detail in the tight constraints of only 60 pages.

But if Chapter 10 is aimed at a wider audience it seems a little remiss not to bring it up in the chapter itself.

I probably missed the stated caveat in chapter 10’s executive summary or introduction.

The authors continue:

As the observations are influenced by external forcing, and we do not have a non-externally forced alternative reality to use to test this assumption, an alternative common method is to compare the power spectral density (PSD) of the observations with the model simulations that include external forcings.

We have already seen that overall the CMIP5 and CMIP3 model variability compares favorably across different periodicities with HadCRUT4-observed variability (Figure 5). Figure S11 (in the supporting information) includes the PSDs for each of the eight models (BCC-CSM1-1, CNRM-CM5, CSIRO- Mk3-6-0, CanESM2, GISS-E2-H, GISS-E2-R, HadGEM2- ES and NorESM1-M) that can be examined in the detection analysis.

Variability for the historical experiment in most of the models compares favorably with HadCRUT4 over the range of periodicities, except for HadGEM2-ES whose very long period variability is lower due to the lower overall trend than observed and for CanESM2 and bcc-cm1-1 whose decadal and higher period variability are larger than observed.

While not a strict test, Figure S11 suggests that the models have an adequate representation of internal variability—at least on the global mean level. In addition, we use the residual test from the regression to test whether there are any gross failings in the models representation of internal variability.

Figure S11 is in the supplementary section of the paper:

From Jones et al 2013, figure S11

From Jones et al 2013, figure S11

Figure 4

From what I can see, this demonstrates that the spectrum of the models’ internal variability (“historicalNat”) is different from the spectrum of the models’ forced response with GHG changes (“historical”).

It feels like my quantum mechanics classes all over again. I’m probably missing something obvious, and hopefully knowledgeable readers can explain.

Chapter 9 of AR5 – Climate Models’ Representation of Internal Variability

Chapter 9, reviewing models, stretches to over 80 pages. The section on internal variability is section 9.5.1:

However, the ability to simulate climate variability, both unforced internal variability and forced variability (e.g., diurnal and seasonal cycles) is also important. This has implications for the signal-to-noise estimates inherent in climate change detection and attribution studies where low-frequency climate variability must be estimated, at least in part, from long control integrations of climate models (Section 10.2).

Section 9.5.3:

In addition to the annual, intra-seasonal and diurnal cycles described above, a number of other modes of variability arise on multi-annual to multi-decadal time scales (see also Box 2.5). Most of these modes have a particular regional manifestation whose amplitude can be larger than that of human-induced climate change. The observational record is usually too short to fully evaluate the representation of variability in models and this motivates the use of reanalysis or proxies, even though these have their own limitations.

Figure 9.33a shows simulated internal variability of mean surface temperature from CMIP5 pre-industrial control simulations. Model spread is largest in the tropics and mid to high latitudes (Jones et al., 2012), where variability is also large; however, compared to CMIP3, the spread is smaller in the tropics owing to improved representation of ENSO variability (Jones et al., 2012). The power spectral density of global mean temperature variance in the historical simulations is shown in Figure 9.33b and is generally consistent with the observational estimates. At longer time scale of the spectra estimated from last millennium simulations, performed with a subset of the CMIP5 models, can be assessed by comparison with different NH temperature proxy records (Figure 9.33c; see Chapter 5 for details). The CMIP5 millennium simulations include natural and anthropogenic forcings (solar, volcanic, GHGs, land use) (Schmidt et al., 2012).

Significant differences between unforced and forced simulations are seen for time scale larger than 50 years, indicating the importance of forced variability at these time scales (Fernandez-Donado et al., 2013). It should be noted that a few models exhibit slow background climate drift which increases the spread in variance estimates at multi-century time scales.

Nevertheless, the lines of evidence above suggest with high confidence that models reproduce global and NH temperature variability on a wide range of time scales.

[Emphasis added]. Here is fig 9.33:

From IPCC AR5 Chapter 10

From IPCC AR5 Chapter 10

Figure 5 – Click to Expand

The bottom graph shows the spectra of the last 1,000 years – black line is observations (reconstructed from proxies), dashed lines are without GHG forcings, and solid lines are with GHG forcings.

In later articles we will review this in more detail.

Conclusion

The IPCC report on attribution is very interesting. Most attribution studies compare observations of the last 100 – 150 years with model simulations using anthropogenic GHG changes and model simulations without (note 3).

The results show a much better match for the case of the anthropogenic forcing.

The primary method is with global mean surface temperature, with more recent studies also comparing the spatial breakdown. We saw one such comparison with van Oldenborgh et al (2013). Jones et al (2013) also reviews spatial matching, finding a better fit (of models & observations) for the last half of the 20th century than the first half. (As with van Oldenborgh’s paper, the % match outside 90% of model results was greater than 10%).

My question as I first read Chapter 10 was how was the high confidence attained and what is a fingerprint?

I was led back, by following the chain of references, to one of the early papers on the topic (1996) that also had similar high confidence. (We saw this in Part Three). It was intriguing that such confidence could be attained with just a few “no forcing” model runs as comparison, all of which needed “flux adjustment”. Current models need much less, or often zero, flux adjustment.

In later papers reviewed in AR5, “no forcing” model simulations that show temperature trends or jumps are often removed or adjusted.

I’m not trying to suggest that “no forcing” GCM simulations of the last 150 years have anything like the temperature changes we have observed. They don’t.

But I was trying to understand what assumptions and premises were involved in attribution. Chapter 10 of AR5 has been valuable in suggesting references to read, but poor at laying out the assumptions and premises of attribution studies.

For clarity, as I stated in Part Three:

..as regular readers know I am fully convinced that the increases in CO2, CH4 and other GHGs over the past 100 years or more can be very well quantified into “radiative forcing” and am 100% in agreement with the IPCCs summary of the work of atmospheric physics over the last 50 years on this topic. That is, the increases in GHGs have led to something like a “radiative forcing” of 2.8 W/m²..

..Therefore, it’s “very likely” that the increases in GHGs over the last 100 years have contributed significantly to the temperature changes that we have seen.

So what’s my point?

Chapter 10 of the IPCC report fails to highlight the important assumptions in the attribution studies. Chapter 9 of the IPCC report has a section on centennial/millennial natural variability with a “high confidence” conclusion that comes with little evidence and appears to be based on a cursory comparison of the spectral results of the last 1,000 years proxy results with the CMIP5 modeling studies.

In chapter 10, the executive summary states:

..given that observed warming since 1951 is very large compared to climate model estimates of internal variability (Section 10.3.1.1.2), which are assessed to be adequate at global scale (Section 9.5.3.1), we conclude that it is virtually certain [99-100%] that internal variability alone cannot account for the observed global warming since 1951.

[Emphasis added]. I agree, and I don’t think anyone who understands radiative forcing and climate basics would disagree. To claim otherwise would be as ridiculous as, for example, claiming that tiny changes in solar insolation from eccentricity modifications over 100 kyrs cause the end of ice ages, whereas large temperature changes during these ice ages have no effect (see note 2).

The executive summary also says:

It is extremely likely [95–100%] that human activities caused more than half of the observed increase in GMST from 1951 to 2010.

The idea is plausible, but the confidence level is dependent on a premise that is claimed via one graph (fig 9.33) of the spectrum of the last 1,000 years. High confidence (“that models reproduce global and NH temperature variability on a wide range of time scales”) is just an opinion.

It’s crystal clear, by inspection of CMIP3 and CMIP5 model results, that models with anthropogenic forcing match the last 150 years of temperature changes much better than models held at constant pre-industrial forcing.

I believe natural variability is a difficult subject which needs a lot more than a cursory graph of the spectrum of the last 1,000 years to even achieve low confidence in our understanding.

Chapters 9 & 10 of AR5 haven’t investigated “natural variability” at all. For interest, some skeptic opinions are given in note 4.

I propose an alternative summary for Chapter 10 of AR5:

It is extremely likely [95–100%] that human activities caused more than half of the observed increase in GMST from 1951 to 2010, but this assessment is subject to considerable uncertainties.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Multi-model assessment of regional surface temperature trends, TR Knutson, F Zeng & AT Wittenberg, Journal of Climate (2013) – free paper

Attribution of observed historical near surface temperature variations to anthropogenic and natural causes using CMIP5 simulations, Gareth S Jones, Peter A Stott & Nikolaos Christidis, Journal of Geophysical Research Atmospheres (2013) – paywall paper

Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature, Aurélien Ribes & Laurent Terray, Climate Dynamics (2013) – free paper

Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis, Aurélien Ribes, Serge Planton & Laurent Terray, Climate Dynamics (2013) – free paper

Reliability of regional climate model trends, GJ van Oldenborgh, FJ Doblas Reyes, SS Drijfhout & E Hawkins, Environmental Research Letters (2013) – free paper

Notes

Note 1: CMIP = Coupled Model Intercomparison Project. CMIP3 was for AR4 and CMIP5 was for AR5.

Read about CMIP5:

At a September 2008 meeting involving 20 climate modeling groups from around the world, the WCRP’s Working Group on Coupled Modelling (WGCM), with input from the IGBP AIMES project, agreed to promote a new set of coordinated climate model experiments. These experiments comprise the fifth phase of the Coupled Model Intercomparison Project (CMIP5). CMIP5 will notably provide a multi-model context for

1) assessing the mechanisms responsible for model differences in poorly understood feedbacks associated with the carbon cycle and with clouds

2) examining climate “predictability” and exploring the ability of models to predict climate on decadal time scales, and, more generally

3) determining why similarly forced models produce a range of responses…

From the website link above you can read more. CMIP5 is a substantial undertaking, with massive output of data from the latest climate models. Anyone can access this data, similar to CMIP3. Here is the Getting Started page.

And CMIP3:

In response to a proposed activity of the World Climate Research Programme (WCRP) Working Group on Coupled Modelling (WGCM), PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science.

This unprecedented collection of recent model output is officially known as the “WCRP CMIP3 multi-model dataset.” It is meant to serve IPCC’s Working Group 1, which focuses on the physical climate system — atmosphere, land surface, ocean and sea ice — and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it.

With the consent of participating climate modelling groups, the WGCM has declared the CMIP3 multi-model dataset open and free for non-commercial purposes. After registering and agreeing to the “terms of use,” anyone can now obtain model output via the ESG data portal, ftp, or the OPeNDAP server.

As of July 2009, over 36 terabytes of data were in the archive and over 536 terabytes of data had been downloaded among the more than 2500 registered users

Note 2: This idea is explained in Ghosts of Climates Past -Eighteen – “Probably Nonlinearity” of Unknown Origin – what is believed and what is put forward as evidence for the theory that ice age terminations were caused by orbital changes, see especially the section under the heading: Why Theory B is Unsupportable.

Note 3: Some studies use just fixed pre-industrial values, and others compare “natural forcings” with “no forcings”.

“Natural forcings” = radiative changes due to solar insolation variations (which are not known with much confidence) and aerosols from volcanos. “No forcings” is simply fixed pre-industrial values.

Note 4: Chapter 11 (of AR5), p.982:

For the remaining projections in this chapter the spread among the CMIP5 models is used as a simple, but crude, measure of uncertainty. The extent of agreement between the CMIP5 projections provides rough guidance about the likelihood of a particular outcome. But—as partly illustrated by the discussion above—it must be kept firmly in mind that the real world could fall outside of the range spanned by these particular models. See Section 11.3.6 for further discussion.

And p. 1004:

It is possible that the real world might follow a path outside (above or below) the range projected by the CMIP5 models. Such an eventuality could arise if there are processes operating in the real world that are missing from, or inadequately represented in, the models. Two main possibilities must be considered: (1) Future radiative and other forcings may diverge from the RCP4.5 scenario and, more generally, could fall outside the range of all the RCP scenarios; (2) The response of the real climate system to radiative and other forcing may differ from that projected by the CMIP5 models. A third possibility is that internal fluctuations in the real climate system are inadequately simulated in the models. The fidelity of the CMIP5 models in simulating internal climate variability is discussed in Chapter 9..

..The response of the climate system to radiative and other forcing is influenced by a very wide range of processes, not all of which are adequately simulated in the CMIP5 models (Chapter 9). Of particular concern for projections are mechanisms that could lead to major ‘surprises’ such as an abrupt or rapid change that affects global-to-continental scale climate.

Several such mechanisms are discussed in this assessment report; these include: rapid changes in the Arctic (Section 11.3.4 and Chapter 12), rapid changes in the ocean’s overturning circulation (Chapter 12), rapid change of ice sheets (Chapter 13) and rapid changes in regional monsoon systems and hydrological climate (Chapter 14). Additional mechanisms may also exist as synthesized in Chapter 12. These mechanisms have the potential to influence climate in the near term as well as in the long term, albeit the likelihood of substantial impacts increases with global warming and is generally lower for the near term.

And p. 1009 (note that we looked at Rowlands et al 2012 in Part Five – Why Should Observations match Models?):

The CMIP3 and CMIP5 projections are ensembles of opportunity, and it is explicitly recognized that there are sources of uncertainty not simulated by the models. Evidence of this can be seen by comparing the Rowlands et al. (2012) projections for the A1B scenario, which were obtained using a very large ensemble in which the physics parameterizations were perturbed in a single climate model, with the corresponding raw multi-model CMIP3 projections. The former exhibit a substantially larger likely range than the latter. A pragmatic approach to addressing this issue, which was used in the AR4 and is also used in Chapter 12, is to consider the 5 to 95% CMIP3/5 range as a ‘likely’ rather than ‘very likely’ range.

Replacing ‘very likely’ = 90–100% with ‘likely 66–100%’ is a good start. How does this recast chapter 10?

And Chapter 1 of AR5, p. 138:

Model spread is often used as a measure of climate response uncertainty, but such a measure is crude as it takes no account of factors such as model quality (Chapter 9) or model independence (e.g., Masson and Knutti, 2011; Pennell and Reichler, 2011), and not all variables of interest are adequately simulated by global climate models..

..Climate varies naturally on nearly all time and space scales, and quantifying precisely the nature of this variability is challenging, and is characterized by considerable uncertainty.

[Emphasis added in all bold sections above]

Read Full Post »

In (still) writing what was to be Part Six (Attribution in AR5 from the IPCC), I was working through Knutson et al 2013, one of the papers referenced by AR5. That paper in turn referenced Are historical records sufficient to constrain ENSO simulations? [link corrected] by Andrew Wittenberg (2009). This is a very interesting paper and I was glad to find it because it illustrates some of the points we have been looking at.

It’s an easy paper to read (and free) and so I recommend reading the whole paper.

The paper uses NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 global coupled atmosphere/ocean/land/ice GCM (see note 1 for reference and description):

CM2.1 played a prominent role in the third Coupled Model Intercomparison Project (CMIP3) and the Fourth Assessment of the Intergovernmental Panel on Climate Change (IPCC), and its tropical and ENSO simulations have consistently ranked among the world’s top GCMs [van Oldenborgh et al., 2005; Wittenberg et al., 2006; Guilyardi, 2006; Reichler and Kim, 2008].

The coupled pre-industrial control run is initialized as by Delworth et al. [2006], and then integrated for 2220 yr with fixed 1860 estimates of solar irradiance, land cover, and atmospheric composition; we focus here on just the last 2000 yr. This simulation required one full year to run on 60 processors at GFDL.

First of all we see the challenge for climate models – a reasonable resolution coupled GCM running just one 2000-year simulation consumed one year of multiple processor time.

Wittenberg shows the results in the graph below. At the top is our observational record going back 140 years, then below are the simulation results of the SST variation in the El Nino region broken into 20 century-long segments.

From Wittenberg 2009

From Wittenberg 2009

 Figure 1 – Click to Expand

What we see is that different centuries have very different results:

There are multidecadal epochs with hardly any variability (M5); epochs with intense, warm-skewed ENSO events spaced five or more years apart (M7); epochs with moderate, nearly sinusoidal ENSO events spaced three years apart (M2); and epochs that are highly irregular in amplitude and period (M6). Occasional epochs even mimic detailed temporal sequences of observed ENSO events; e.g., in both R2 and M6, there are decades of weak, biennial oscillations, followed by a large warm event, then several smaller events, another large warm event, and then a long quiet period. Although the model’s NINO3 SST variations are generally stronger than observed, there are long epochs (like M1) where the ENSO amplitude agrees well with observations (R1).

Wittenberg comments on the problem for climate modelers:

An unlucky modeler – who by chance had witnessed only M1-like variability throughout the first century of simulation – might have erroneously inferred that the model’s ENSO amplitude matched observations, when a longer simulation would have revealed a much stronger ENSO.

If the real-world ENSO is similarly modulated, then there is a more disturbing possibility. Had the research community been unlucky enough to observe an unrepresentative ENSO over the past 150 yr of measurements, then it might collectively have misjudged ENSO’s longer-term natural behavior. In that case, historically-observed statistics could be a poor guide for modelers, and observed trends in ENSO statistics might simply reflect natural variations..

..A 200 yr epoch of consistently strong variability (M3) can be followed, just one century later, by a 200 yr epoch of weak variability (M4). Documenting such extremes might thus require a 500+ yr record. Yet few modeling centers currently attempt simulations of that length when evaluating CGCMs under development – due to competing demands for high resolution, process completeness, and quick turnaround to permit exploration of model sensitivities.

Model developers thus might not even realize that a simulation manifested long-term ENSO modulation, until long after freezing the model development. Clearly this could hinder progress. An unlucky modeler – unaware of centennial ENSO modulation and misled by comparisons between short, unrepresentative model runs – might erroneously accept a degraded model or reject an improved model.

[Emphasis added].

Wittenberg shows the same data in the frequency domain and has presented the data in a way that illustrates the different perspective you might have depending upon your period of observation or period of model run. It’s worth taking the time to understand what is in these graphs:

From Wittenberg 2009

From Wittenberg 2009

Figure 2 – Click to Expand

The first graph, 2a:

..time-mean spectra of the observations for epochs of length 20 yr – roughly the duration of observations from satellites and the Tropical Atmosphere Ocean (TAO) buoy array. The spectral power is fairly evenly divided between the seasonal cycle and the interannual ENSO band, the latter spanning a broad range of time scales between 1.3 to 8 yr.

So the different colored lines indicate the spectral power for each period. The black dashed line is the observed spectral power over the 140 year (observational) period. This dashed line is repeated in figure 2c.

The second graph, 2b shows the modeled results if we break up the 2000 years into 100 x 20-year periods.

The third graph, 2c, shows the modeled results broken up into 100 year periods. The probability number in the bottom right, 90%, is the likelihood of observations falling outside the range of the model results – if “the simulated subspectra independent and identically distributed.. at bottom right is the probability that an interval so constructed would bracket the next subspectrum to emerge from the model.

So what this says, paraphrasing and over-simplifying: “we are 90% sure that the observations can’t be explained by the models”.

Of course, this independent and identically distributed assumption is not valid, but as we will hopefully get onto many articles further in this series, most of these statistical assumptions – stationary, gaussian, AR1 – are problematic for real world non-linear systems.

To be clear, the paper’s author is demonstrating a problem in such a statistical approach.

Conclusion

Models are not reality. This is a simulation with the GFDL model. It doesn’t mean ENSO is like this. But it might be.

The paper illustrates a problem I highlighted in Part Five – observations are only one “realization” of possible outcomes. The last century or century and a half of surface observations could be an outlier. The last 30 years of satellite data could equally be an outlier. Even if our observational periods are not an outlier and are right there on the mean or median, matching climate models to observations may still greatly under-represent natural climate variability.

Non-linear systems can demonstrate variability over much longer time-scales than the the typical period between characteristic events. We will return to this in future articles in more detail. Such systems do not have to be “chaotic” (where chaotic means that tiny changes in initial conditions cause rapidly diverging results).

What period of time is necessary to capture natural climate variability?

I will give the last word to the paper’s author:

More worryingly, if nature’s ENSO is similarly modulated, there is no guarantee that the 150 yr historical SST record is a fully representative target for model development..

..In any case, it is sobering to think that even absent any anthropogenic changes, the future of ENSO could look very different from what we have seen so far.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Are historical records sufficient to constrain ENSO simulations? Andrew T. Wittenberg, GRL (2009) – free paper

GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, Delworth et al, Journal of Climate, 2006 – free paper

Notes

Note 1: The paper referenced for the GFDL model is GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, Delworth et al, 2006:

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) are described.

The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude x 2.5° longitude; the atmospheric model has 24 vertical levels.

The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extra- tropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovern- mental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

There’s a brief description of the newer model version CM3.0 on the GFDL page.

Read Full Post »

In Part Three we looked at attribution in the early work on this topic by Hegerl et al 1996. I started to write Part Four as the follow up on Attribution as explained in the 5th IPCC report (AR5), but got caught up in the many volumes of AR5.

And instead for this article I decided to focus on what might seem like an obscure point. I hope readers stay with me because it is important.

Here is a graphic from chapter 11 of IPCC AR5:

From IPCC AR5 Chapter 11

From IPCC AR5 Chapter 11

Figure 1

And in the introduction, chapter 1:

Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The relevant quantities are most often surface variables such as temperature, precipitation and wind.

Classically the period for averaging these variables is 30 years, as defined by the World Meteorological Organization.

Climate in a wider sense also includes not just the mean conditions, but also the associated statistics (frequency, magnitude, persistence, trends, etc.), often combining parameters to describe phenomena such as droughts. Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer.

[Emphasis added].

Weather is an Initial Value Problem, Climate is a Boundary Value Problem

The idea is fundamental, the implementation is problematic.

As explained in Natural Variability and Chaos – Two – Lorenz 1963, there are two key points about a chaotic system:

  1. With even a minute uncertainty in the initial starting condition, the predictability of future states is very limited
  2. Over a long time period the statistics of the system are well-defined

(Being technical, the statistics are well-defined in a transitive system).

So in essence, we can’t predict the exact state of the future – from the current conditions – beyond a certain timescale which might be quite small. In fact, in current weather prediction this time period is about one week.

After a week we might as well say either “the weather on that day will be the same as now” or “the weather on that day will be the climatological average” – and either of these will be better than trying to predict the weather based on the initial state.

No one disagrees on this first point.

In current climate science and meteorology the term used is the skill of the forecast. Skill means, not how good is the forecast, but how much better is it than a naive approach like, “it’s July in New York City so the maximum air temperature today will be 28ºC”.

What happens in practice, as can be seen in the simple Lorenz system shown in Part Two, is a tiny uncertainty about the starting condition gets amplified. Two almost identical starting conditions will diverge rapidly – the “butterfly effect”. Eventually these two conditions are no more alike than one of the conditions and a time chosen at random from the future.

The wide divergence doesn’t mean that the future state can be anything. Here’s an example from the simple Lorenz system for three slightly different initial conditions:

Lorenz63-5ksecs-x-vs-time-zoom-499px

Figure 2

We can see that the three conditions that looked identical for the first 20 seconds (see figure 2 in Part Two) have diverged. The values are bounded but at any given time we can’t predict what the value will be.

On the second point – the statistics of the system, there is a tiny hiccup.

But first let’s review what is agreed upon. Climate is the statistics of weather. Weather is unpredictable more than a week ahead. Climate, as the statistics of weather, might be predictable. That is, just because weather is unpredictable, it doesn’t mean (or prove) that climate is also unpredictable.

This is what we find with simple chaotic systems.

So in the endeavor of climate modeling the best we can hope for is a probabilistic forecast. We have to run “a lot” of simulations and review the statistics of the parameter we are trying to measure.

To give a concrete example, we might determine from model simulations that the mean sea surface temperature in the western Pacific (between a certain latitude and longitude) in July has a mean of 29ºC with a standard deviation of 0.5ºC, while for a certain part of the north Atlantic it is 6ºC with a standard deviation of 3ºC. In the first case the spread of results tells us – if we are confident in our predictions – that we know the western Pacific SST quite accurately, but the north Atlantic SST has a lot of uncertainty. We can’t do anything about the model spread. In the end, the statistics are knowable (in theory), but the actual value on a given day or month or year are not.

Now onto the hiccup.

With “simple” chaotic systems that we can perfectly model (note 1) we don’t know in advance the timescale of “predictable statistics”. We have to run lots of simulations over long time periods until the statistics converge on the same result. If we have parameter uncertainty (see Ensemble Forecasting) this means we also have to run simulations over the spread of parameters.

Here’s my suggested alternative of the initial value vs boundary value problem:

Suggested replacement for AR5, Box 11.1, Figure 2

Figure 3

So one body made an ad hoc definition of climate as the 30-year average of weather.

If this definition is correct and accepted then “climate” is not a “boundary value problem” at all. Climate is an initial value problem and therefore a massive problem given our ability to forecast only one week ahead.

Suppose, equally reasonably, that the statistics of weather (=climate), given constant forcing (note 2), are predictable over a 10,000 year period.

In that case we can be confident that, with near perfect models, we have the ability to be confident about the averages, standard deviations, skews, etc of the temperature at various locations on the globe over a 10,000 year period.

Conclusion

The fact that chaotic systems exhibit certain behavior doesn’t mean that 30-year statistics of weather can be reliably predicted.

30-year statistics might be just as dependent on the initial state as the weather three weeks from today.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

Notes

Note 1: The climate system is obviously imperfectly modeled by GCMs, and this will always be the case. The advantage of a simple model is we can state that the model is a perfect representation of the system – it is just a definition for convenience. It allows us to evaluate how slight changes in initial conditions or parameters affect our ability to predict the future.

The IPCC report also has continual reminders that the model is not reality, for example, chapter 11, p. 982:

For the remaining projections in this chapter the spread among the CMIP5 models is used as a simple, but crude, measure of uncertainty. The extent of agreement between the CMIP5 projections provides rough guidance about the likelihood of a particular outcome. But — as partly illustrated by the discussion above — it must be kept firmly in mind that the real world could fall outside of the range spanned by these particular models.

[Emphasis added].

Chapter 1, p.138:

Model spread is often used as a measure of climate response uncertainty, but such a measure is crude as it takes no account of factors such as model quality (Chapter 9) or model independence (e.g., Masson and Knutti, 2011; Pennell and Reichler, 2011), and not all variables of interest are adequately simulated by global climate models..

..Climate varies naturally on nearly all time and space scales, and quantifying precisely the nature of this variability is challenging, and is characterized by considerable uncertainty.

I haven’t yet been able to determine how these firmly noted and challenging uncertainties have been factored into the quantification of 95-100%, 99-100%, etc, in the various chapters of the IPCC report.

Note 2:  There are some complications with defining exactly what system is under review. For example, do we take the current solar output, current obliquity,precession and eccentricity as fixed? If so, then any statistics will be calculated for a condition that will anyway be changing. Alternatively, we can take these values as changing inputs in so far as we know the changes – which is true for obliquity, precession and eccentricity but not for solar output.

The details don’t really alter the main point of this article.

Read Full Post »

I’ve been somewhat sidetracked on this series, mostly by starting up a company and having no time, but also by the voluminous distractions of IPCC AR5. The subject of attribution could be a series by itself but as I started the series Natural Variability and Chaos it makes sense to weave it into that story.

In Part One and Part Two we had a look at chaotic systems and what that might mean for weather and climate. I was planning to develop those ideas a lot more before discussing attribution, but anyway..

AR5, Chapter 10: Attribution is 85 pages on the idea that the changes over the last 50 or 100 years in mean surface temperature – and also some other climate variables – can be attributed primarily to anthropogenic greenhouse gases.

The technical side of the discussion fascinated me, but has a large statistical component. I’m a rookie with statistics, and maybe because of this, I’m often suspicious about statistical arguments.

Digression on Statistics

The foundation of a lot of statistics is the idea of independent events. For example, spin a roulette wheel and you get a number between 0 and 36 and a color that is red, black – or if you’ve landed on a zero, neither.

The statistics are simple – each spin of the roulette wheel is an independent event – that is, it has no relationship with the last spin of the roulette wheel. So, looking ahead, what is the chance of getting 5 two times in a row? The answer (with a 0 only and no “00” as found in some roulette tables) is 1/37 x 1/37 = 0.073%.

However, after you have spun the roulette wheel and got a 5, what is the chance of a second 5? It’s now just 1/37 = 2.7%. The past has no impact on the future statistics. Most of real life doesn’t correspond particularly well to this idea, apart from playing games of chance like poker and so on.

I was in the gym the other day and although I try and drown it out with music from my iPhone, the Travesty (aka “the News”) was on some of the screens in the gym – with text of the “high points” on the screen aimed at people trying to drown out the annoying travestyreaders. There was a report that a new study had found that autism was caused by “Cause X” – I have blanked it out to avoid any unpleasant feeling for parents of autistic kids – or people planning on having kids who might worry about “Cause X”.

It did get me thinking – if you have let’s say 10,000 potential candidates for causing autism, and you set the bar at 95% probability of rejecting the hypothesis that a given potential cause is a factor, what is the outcome? Well, if there is a random spread of autism among the population with no actual cause (let’s say it is caused by a random genetic mutation with no link to any parental behavior, parental genetics or the environment) then you will expect to find about 500 “statistically significant” factors for autism simply by testing at the 95% level. That’s 500, when none of them are actually the real cause. It’s just chance. Plenty of fodder for pundits though.

That’s one problem with statistics – the answer you get unavoidably depends on your frame of reference.

The questions I have about attribution are unrelated to this specific point about statistics, but there are statistical arguments in the attribution field that seem fatally flawed. Luckily I’m a statistical novice so no doubt readers will set me straight.

On another unrelated point about statistical independence, only slightly more relevant to the question at hand, Pirtle, Meyer & Hamilton (2010) said:

In short, we note that GCMs are commonly treated as independent from one another, when in fact there are many reasons to believe otherwise. The assumption of independence leads to increased confidence in the ‘‘robustness’’ of model results when multiple models agree. But GCM independence has not been evaluated by model builders and others in the climate science community. Until now the climate science literature has given only passing attention to this problem, and the field has not developed systematic approaches for assessing model independence.

.. end of digression

Attribution History

In my efforts to understand Chapter 10 of AR5 I followed up on a lot of references and ended up winding my way back to Hegerl et al 1996.

Gabriele Hegerl is one of the lead authors of Chapter 10 of AR5, was one of the two coordinating lead authors of the Attribution chapter of AR4, and one of four lead authors on the relevant chapter of AR3 – and of course has a lot of papers published on this subject.

As is often the case, I find that to understand a subject you have to start with a focus on the earlier papers because the later work doesn’t make a whole lot of sense without this background.

This paper by Hegerl and her colleagues use the work of one of the co-authors, Klaus Hasselmann – his 1993 paper “Optimal fingerprints for detection of time dependent climate change”.

Fingerprints, by the way, seems like a marketing term. Fingerprints evokes the idea that you can readily demonstrate that John G. Doe of 137 Smith St, Smithsville was at least present at the crime scene and there is no possibility of confusing his fingerprints with John G. Dode who lives next door even though their mothers could barely tell them apart.

This kind of attribution is more in the realm of “was it the 6ft bald white guy or the 5’5″ black guy”?

Well, let’s set aside questions of marketing and look at the details.

Detecting GHG Climate Change with Optimal Fingerprint Methods in 1996

The essence of the method is to compare observations (measurements) with:

  • model runs with GHG forcing
  • model runs with “other anthropogenic” and natural forcings
  • model runs with internal variability only

Then based on the fit you can distinguish one from the other. The statistical basis is covered in detail in Hasselmann 1993 and more briefly in this paper: Hegerl et al 1996 – both papers are linked below in the References.

At this point I make another digression.. as regular readers know I am fully convinced that the increases in CO2, CH4 and other GHGs over the past 100 years or more can be very well quantified into “radiative forcing” and am 100% in agreement with the IPCCs summary of the work of atmospheric physics over the last 50 years on this topic. That is, the increases in GHGs have led to something like a “radiative forcing” of 2.8 W/m² [corrected, thanks to niclewis].

And there isn’t any scientific basis for disputing this “pre-feedback” value. It’s simply the result of basic radiative transfer theory, well-established, and well-demonstrated in observations both in the lab and through the atmosphere. People confused about this topic are confused about science basics and comments to the contrary may be allowed or more likely will be capriciously removed due to the fact that there have been more than 50 posts on this topic (post your comments on those instead). See The “Greenhouse” Effect Explained in Simple Terms and On Uses of A 4 x 2: Arrhenius, The Last 15 years of Temperature History and Other Parodies.

Therefore, it’s “very likely” that the increases in GHGs over the last 100 years have contributed significantly to the temperature changes that we have seen.

To say otherwise – and still accept physics basics – means believing that the radiative forcing has been “mostly” cancelled out by feedbacks while internal variability has been amplified by feedbacks to cause a significant temperature change.

Yet this work on attribution seems to be fundamentally flawed.

Here was the conclusion:

We find that the latest observed 30-year trend pattern of near-surface temperature change can be distinguished from all estimates of natural climate variability with an estimated risk of less than 2.5% if the optimal fingerprint is applied.

With the caveats, that to me, eliminated the statistical basis of the previous statement:

The greatest uncertainty of our analysis is the estimate of the natural variability noise level..

..The shortcomings of the present estimates of natural climate variability cannot be readily overcome. However, the next generation of models should provide us with better simulations of natural variability. In the future, more observations and paleoclimatic information should yield more insight into natural variability, especially on longer timescales. This would enhance the credibility of the statistical test.

Earlier in the paper the authors said:

..However, it is generally believed that models reproduce the space-time statistics of natural variability on large space and long time scales (months to years) reasonably realistic. The verification of variability of CGMCs [coupled GCMs] on decadal to century timescales is relatively short, while paleoclimatic data are sparce and often of limited quality.

..We assume that the detection variable is Gaussian with zero mean, that is, that there is no long-term nonstationarity in the natural variability.

[Emphasis added].

The climate models used would be considered rudimentary by today’s standards. Three different coupled atmosphere-ocean GCMs were used. However, each of them required “flux corrections”.

This method was pretty much the standard until the post 2000 era. The climate models “drifted”, unless, in deity-like form, you topped up (or took out) heat and momentum from various grid boxes.

That is, the models themselves struggled (in 1996) to represent climate unless the climate modeler knew, and corrected for, the long term “drift” in the model.

Conclusion

In the next article we will look at more recent work in attribution and fingerprints and see whether the field has developed.

But in this article we see that the conclusion of an attribution study in 1996 was that there was only a “2.5% chance” that recent temperature changes could be attributed to natural variability. At the same time, the question of how accurate the models were in simulating natural variability was noted but never quantified. And the models were all “flux corrected”. This means that some aspects of the long term statistics of climate were considered to be known – in advance.

So I find it difficult to accept any statistical significance in the study at all.

If the finding instead was introduced with the caveat “assuming the accuracy of our estimates of long term natural variability of climate is correct..” then I would probably be quite happy with the finding. And that question is the key.

The question should be:

What is the likelihood that climate models accurately represent the long-term statistics of natural variability?

  • Virtually certain
  • Very likely
  • Likely
  • About as likely as not
  • Unlikely
  • Very unlikely
  • Exceptionally unlikely

So far I am yet to run across a study that poses this question.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Bindoff, N.L., et al, 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

Detecting greenhouse gas induced climate change with an optimal fingerprint method, Hegerl, von Storch, Hasselmann, Santer, Cubasch & Jones, Journal of Climate (1996)

What does it mean when climate models agree? A case for assessing independence among general circulation models, Zachary Pirtle, Ryan Meyer & Andrew Hamilton, Environ. Sci. Policy (2010)

Optimal fingerprints for detection of time dependent climate change, Klaus Hasselmann, Journal of Climate (1993)

Read Full Post »

In Part Seven – GCM I  through Part Ten – GCM IV we looked at GCM simulations of ice ages.

These were mostly attempts at “glacial inception”, that is, starting an ice age. But we also saw a simulation of the last 120 kyrs which attempted to model a complete ice age cycle including the last termination. As we saw, there were lots of limitations..

One condition for glacial inception, “perennial snow cover at high latitudes”, could be produced with a high-resolution coupled atmosphere-ocean GCM (AOGCM), but that model did suffer from the problem of having a cold bias at high latitudes.

The (reasonably accurate) simulation of a whole cycle including inception and termination came by virtue of having the internal feedbacks (ice sheet size & height and CO2 concentration) prescribed.

Just to be clear to new readers, these comments shouldn’t indicate that I’ve uncovered some secret that climate scientists are trying to hide, these points are all out in the open and usually highlighted by the authors of the papers.

In Part Nine – GCM III, one commenter highlighted a 2013 paper by Ayako Abe-Ouchi and co-workers, where the journal in question, Nature, had quite a marketing pitch on the paper. I made brief comment on it in a later article in response to another question, including that I had emailed the lead author asking a question about the modeling work (how was a 120 kyr cycle actually simulated?).

Most recently, in Eighteen – “Probably Nonlinearity” of Unknown Origin, another commented highlighted it, which rekindled my enthusiasm, and I went back and read the paper again. It turns out that my understanding of the paper had been wrong. It wasn’t really a GCM paper at all. It was an ice sheet paper.

There is a whole field of papers on ice sheet models deserving attention.

GCM review

Let’s review GCMs first of all to help us understand where ice sheet models fit in the hierarchy of climate simulations.

GCMs consist of a number of different modules coupled together. The first GCMs were mostly “atmospheric GCMs” = AGCMs, and either they had a “swamp ocean” = a mixed layer of fixed depth, or had prescribed ocean boundary conditions set from an ocean model or from an ocean reconstruction.

Less commonly, unless you worked just with oceans, there were ocean GCMs with prescribed atmospheric boundary conditions (prescribed heat and momentum flux from the atmosphere).

Then coupled atmosphere-ocean GCMs came along = AOGCMs. It was a while before these two parts matched up to the point where there was no “flux drift”, that is, no disappearing heat flux from one part of the model.

Why so difficult to get these two models working together? One important reason comes down to the time-scales involved, which result from the difference in heat capacity and momentum of the two parts of the climate system. The heat capacity and momentum of the ocean is much much higher than that of the atmosphere.

And when we add ice sheets models – ISMs – we have yet another time scale to consider.

  • the atmosphere changes in days, weeks and months
  • the ocean changes in years, decades and centuries
  • the ice sheets changes in centuries, millennia and tens of millenia

This creates a problem for climate scientists who want to apply the fundamental equations of heat, mass & momentum conservation along with parameterizations for “stuff not well understood” and “stuff quite-well-understood but whose parameters are sub-grid”. To run a high resolution AOGCM for a 1,000 years simulation might consume 1 year of supercomputer time and the ice sheet has barely moved during that period.

Ice Sheet Models

Scientists who study ice sheets have a whole bunch of different questions. They want to understand how the ice sheets developed.

What makes them grow, shrink, move, slide, melt.. What parameters are important? What parameters are well understood? What research questions are most deserving of attention? And:

Does our understanding of ice sheet dynamics allow us to model the last glacial cycle?

To answer that question we need a model for ice sheet dynamics, and to that we need to apply some boundary conditions from some other “less interesting” models, like GCMs. As a result, there are a few approaches to setting the boundary conditions so we can do our interesting work of modeling ice sheets.

Before we look at that, let’s look at the dynamics of ice sheets themselves.

Ice Sheet Dynamics

First, in the theme of the last paper, Eighteen – “Probably Nonlinearity” of Unknown Origin, here is Marshall & Clark 2002:

The origin of the dominant 100-kyr ice-volume cycle in the absence of substantive radiation forcing remains one of the most vexing questions in climate dynamics

We can add that to the 34 papers reviewed in that previous article. This paper by Marshall & Clark is definitely a good quick read for people who want to understand ice sheets a little more.

Ice doesn’t conduct a lot of heat – it is a very good insulator. So the important things with ice sheets happen at the top and the bottom.

At the top, ice melts, and the water refreezes, runs off or evaporates. In combination, the loss is called ablation. Then we have precipitation that adds to the ice sheet. So the net effect determines what happens at the top of the ice sheet.

At the bottom, when the ice sheet is very thin, heat can be conducted through from the atmosphere to the base and make it melt – if the atmosphere is warm enough. As the ice sheet gets thicker, very little heat is conducted through. However, there are two important sources of heat for surface heating which results in “basal sliding”. One source is geothermal energy. This is around 0.1 W/m² which is very small unless we are dealing with an insulating material (like ice) and lots of time (like ice sheets). The other source is the shear stress in the ice sheet which can create a lot of heat via the mechanics of deformation.

Once the ice sheet is able to start sliding, the dynamics create a completely different result compared to an ice sheet “cold-pinned” to the rock underneath.

Some comments from Marshall and Clark:

Ice sheet deglaciation involves an amount of energy larger than that provided directly from high-latitude radiation forcing associated with orbital variations. Internal glaciologic, isostatic, and climatic feedbacks are thus essential to explain the deglaciation.

..Moreover, our results suggest that thermal enabling of basal flow does not occur in response to surface warming, which may explain why the timing of the Termination II occurred earlier than predicted by orbital forcing [Gallup et al., 2002].

Results suggest that basal temperature evolution plays an important role in setting the stage for glacial termination. To confirm this hypothesis, model studies need improved basal process physics to incorporate the glaciological mechanisms associated with ice sheet instability (surging, streaming flow).

..Our simulations suggest that a substantial fraction (60% to 80%) of the ice sheet was frozen to the bed for the first 75 kyr of the glacial cycle, thus strongly limiting basal flow. Subsequent doubling of the area of warm-based ice in response to ice sheet thickening and expansion and to the reduction in downward advection of cold ice may have enabled broad increases in geologically- and hydrologically-mediated fast ice flow during the last deglaciation.

Increased dynamical activity of the ice sheet would lead to net thinning of the ice sheet interior and the transport of large amounts of ice into regions of intense ablation both south of the ice sheet and at the marine margins (via calving). This has the potential to provide a strong positive feedback on deglaciation.

The timescale of basal temperature evolution is of the same order as the 100-kyr glacial cycle, suggesting that the establishment of warm-based ice over a large enough area of the ice sheet bed may have influenced the timing of deglaciation. Our results thus reinforce the notion that at a mature point in their life cycle, 100-kyr ice sheets become independent of orbital forcing and affect their own demise through internal feedbacks.

[Emphasis added]

In this article we will focus on a 2007 paper by Ayako Abe-Ouchi, T Segawa & Fuyuki Saito. This paper is essentially the same modeling approach used in Abe-Ouchi’s 2013 Nature paper.

The Ice Model

The ice sheet model has a time step of 2 years, with 1° grid from 30°N to the north pole, 1° longitude and 20 vertical levels.

Equations for the ice sheet include sliding velocity, ice sheet deformation, the heat transfer through the lithosphere, the bedrock elevation and the accumulation rate on the ice sheet.

Note, there is a reference that some of the model is based on work described in Sensitivity of Greenland ice sheet simulation to the numerical procedure employed for ice sheet dynamics, F Saito & A Abe-Ouchi, Ann. Glaciol., (2005) – but I don’t have access to this journal. (If anyone does, please email the paper to me at scienceofdoom – you know what goes here – gmail.com).

How did they calculate the accumulation on the ice sheet? There is an equation:

Acc=Aref×(1+dP)Ts

Ts is the surface temperature, dP is a measure of aridity and Aref is a reference value for accumulation. This is a highly parameterized method of calculating how much thicker or thinner the ice sheet is growing. The authors reference Marshall et al 2002 for this equation, and that paper is very instructive in how poorly understood ice sheet dynamics actually are.

Here is one part of the relevant section in Marshall et al 2002:

..For completeness here, note that we have also experimented with spatial precipitation patterns that are based on present-day distributions.

Under this treatment, local precipitation rates diminish exponentially with local atmospheric cooling, reflecting the increased aridity that can be expected under glacial conditions (Tarasov and Peltier, 1999).

Paleo-precipitation under this parameterization has the form:

P(λ,θ,t) = Pobs(λ,θ)(1+dp)ΔT(λ,θ,t) x exp[βp.max[hs(λ,θ,t)-ht,0]]       (18)

The parameter dP in this equation represents the percentage of drying per 1C; Tarasov and Peltier (1999) choose a value of 3% per °C; dp = 0:03.

[Emphasis added, color added to highlight the relevant part of the equation]

So dp is a parameter that attempts to account for increasing aridity in colder glacial conditions, and in their 2002 paper Marshall et al describe it as 1 of 4 “free parameters” that are investigated to see what effect they have on ice sheet development around the LGM.

Abe-Ouchi and co-authors took a slightly different approach that certainly seems like an improvement over Marshall et al 2002:

Abe-Ouchi-eqn11

So their value of aridity is just a linear function of ice sheet area – from zero to a fixed value, rather than a fixed value no matter the ice sheet size.

How is Ts calculated? That comes, in a way, from the atmospheric GCM, but probably not in a way that readers might expect. So let’s have a look at the GCM then come back to this calculation of Ts.

Atmospheric GCM Simulations

There were three groups of atmospheric GCM simulations, with parameters selected to try and tease out which factors have the most impact.

Group One: high resolution GCM – 1.1º latitude and longitude and 20 atmospheric vertical levels with fixed sea surface temperature. So there is no ocean model, the ocean temperature are prescribed. Within this group, four experiments:

  • A control experiment – modern day values
  • LGM (last glacial maximum) conditions for CO2 (note 1) and orbital parameters with
    • no ice
    • LGM ice extent but zero thickness
    • LGM ice extent and LGM thickness

So the idea is to compare results with and without the actual ice sheet so see how much impact orbital and CO2 values have vs the effect of the ice sheet itself – and then for the ice sheet to see whether the albedo or the elevation has the most impact. Why the elevation? Well, if an ice sheet is 1km thick then the surface temperature will be something like 6ºC colder. (Exactly how much colder is an interesting question because we don’t know what the lapse rate actually was). There will also be an effect on atmospheric circulation – you’ve stuck a “mountain range” in the path of wind so this changes the circulation.

Each of the four simulations was run for 11 or 13 years and the last 10 years’ results used:

From Abe-Ouchi et al 2007

From Abe-Ouchi et al 2007

Figure 1

It’s clear from this simulation that the full result (left graphic) is mostly caused by the ice sheet (right graphic) rather than CO2, orbital parameters and the SSTs (middle graphic). And the next figure in the paper shows the breakdown between the albedo effect and the height of the ice sheet:

From Abe-Ouchi et al 2007

From Abe-Ouchi et al 2007

Figure 2 – same color legend as figure 1

Now a lapse rate of 5K/km was used. What happens if the lapse rate of 9K/km was used instead? There were no simulations done with different lapse rates.

..Other lapse rates could be used which vary depending on the altitude or location, while a lapse rate larger than 7 K/km or smaller than 4 K/km is inconsistent with the overall feature. This is consistent with the finding of Krinner and Genthon (1999), who suggest a lapse rate of 5.5 K/km, but is in contrast with other studies which have conventionally used lapse rates of 8 K/km or 6.5 K/km to drive the ice sheet models..

Group Two – medium resolution GCM 2.8º latitude and longitude and 11 atmospheric vertical levels, with a “slab ocean” – this means the ocean is treated as one temperature through the depth of some fixed layer, like 50m. So it is allowing the ocean to be there as a heat sink/source responding to climate, but no heat transfer through to a deeper ocean.

There were five simulations in this group, one control (modern day everything) and four with CO2 & orbital parameters at the LGM:

  • no ice sheet
  • LGM ice extent, but flat
  • 12 kyrs ago ice extent, but flat
  • 12 kyrs ago ice extent and height

So this group takes a slightly more detailed look at ice sheet impact. Not surprisingly the simulation results give intermediate values for the ice sheet extent at 12 kyrs ago.

Group Three – medium resolution GCM as in group two, and ice sheets either at present day or LGM, with nine simulations covering different orbital values, different CO2 values of present day, 280 or 200 ppm.

There was also some discussion of the impact of different climate models. I found this fascinating because the difference between CCSM and the other models appears to be as great as the difference in figure 2 (above) which identifies the albedo effect as more significant than the lapse rate effect:

From Abe-Ouchi et al 2007

From Abe-Ouchi et al 2007

Figure 3

And this naturally has me wondering about how much significance to put on the GCM simulation results shown in the paper. The authors also comment:

Based on these GCM results we conclude there remains considerable uncertainty over the actual size of the albedo effect.

Given there is also uncertainty over the lapse rate that actually occurred, it seems there is considerable uncertainty over everything.

Now let’s return to the ice sheet model, because so far we haven’t seen any output from the ice sheet model.

GCM Inputs into the Ice Sheet Model

The equation which calculates the change in accumulation on the ice sheet used a fairly arbitrary parameter dp, with (1+dp) raised to the power of Ts.

The ice sheet model has a 2 year time step. The GCM results don’t provide Ts across the surface grid every 2 years, they are snapshots for certain conditions. The ice sheet model uses this calculation for Ts:

Ts = Tref + ΔTice + ΔTco2 + ΔTinsol + ΔTnonlinear

Tref is the reference temperature which is present day climatology. The other ΔT (change in temperature) values are basically a linear interpolation from two values of the GCM simulations. Here is the ΔTCo2 value:

Abe-Ouchi-2007-eqn6

 

So think of it like this – we have found Ts at one value of CO2 higher and one value of CO2 lower from some snapshot GCM simulations. We plot a graph with Co2 on the x-axis and Ts on the y-axis with just two points on the graph from these two experiments and we draw a straight line between the two points.

To calculate Ts at say 50 kyrs ago we look up the CO2 value at 50 kyrs from ice core data, and read the value of TCO2 from the straight line on the graph.

Likewise for the other parameters. Here is ΔTinsol:

Abe-Ouchi-eqn7

 

So the method is extremely basic. Of course the model needs something..

Now, given that we have inputs for accumulation on the ice sheet, the ice sheet model can run. Here are the results. The third graph (3) is the sea level from proxy results so is our best estimate of reality, with (4) providing model outputs for different parameters of d0 (“desertification” or aridity) and lapse rate, and (5) providing outputs for different parameters of albedo and lapse rate:

From Abe-Ouchi et al 2007

From Abe-Ouchi et al 2007

Figure 4

There are three main points of interest.

Firstly, small changes in the parameters cause huge changes in the final results. The idea of aridity over ice sheets as just linear function of ice sheet size is very questionable itself. The idea of a constant lapse rate is extremely questionable. Together, using values that appear realistic, we can model much less ice sheet growth (sea level drop) or many times greater ice sheet growth than actually occurred.

Secondly, notice that the time of maximum ice sheet (lowest sea level) for realistic results show sea level starting to rise around 12 kyrs, rather than the actual 18 kyrs. This might be due to the impact of orbital factors which were at quite a low level (i.e., high latitude summer insolation was at quite a low level) when the last ice age finished, but have quite an impact in the model. Of course, we have covered this “problem” in a few previous articles in this series. In the context of this model it might be that the impact of the southern hemisphere leading the globe out of the last ice age is completely missing.

Thirdly – while this might be clear to some people, but for many new to this kind of model it won’t be obvious – the inputs for the model are some limits of the actual history. The model doesn’t simulate the actual start and end of the last ice age “by itself”. We feed into the GCM model a few CO2 values. We feed into the GCM model a few ice sheet extent and heights that (as best as can be reconstructed) actually occurred. The GCM gives us some temperature values for these snapshot conditions.

In the case of this ice sheet model, every 2 years (each time step of the ice sheet model) we “look up” the actual value of ice sheet extent and atmospheric CO2 and we linearly interpolate the GCM output temperatures for the current year. And then we crudely parameterize these values into some accumulation rate on the ice sheet.

Conclusion

This is our first foray into ice sheet models. It should be clear that the results are interesting but we are at a very early stage in modeling ice sheets.

The problems are:

  • the computational load required to run a GCM coupled with an ice sheet model over 120 kyrs is much too high, so it can’t be done
  • the resulting tradeoff uses a few GCM snapshot values to feed linearly interpolated temperatures into a parameterized accumulation equation
  • the effect of lapse rate on the results is extremely large and the actual value for lapse rate over ice sheets is very unlikely to be a constant and is also not known
  • our understanding of ice sheet fundamental equations are still at an early stage, as readers can see by reviewing the first two papers below, especially the second one

 Articles in this Series

Part One – An introduction

Part Two – Lorenz – one point of view from the exceptional E.N. Lorenz

Part Three – Hays, Imbrie & Shackleton – how everyone got onto the Milankovitch theory

Part Four – Understanding Orbits, Seasons and Stuff – how the wobbles and movements of the earth’s orbit affect incoming solar radiation

Part Five – Obliquity & Precession Changes – and in a bit more detail

Part Six – “Hypotheses Abound” – lots of different theories that confusingly go by the same name

Part Seven – GCM I – early work with climate models to try and get “perennial snow cover” at high latitudes to start an ice age around 116,000 years ago

Part Seven and a Half – Mindmap – my mind map at that time, with many of the papers I have been reviewing and categorizing plus key extracts from those papers

Part Eight – GCM II – more recent work from the “noughties” – GCM results plus EMIC (earth models of intermediate complexity) again trying to produce perennial snow cover

Part Nine – GCM III – very recent work from 2012, a full GCM, with reduced spatial resolution and speeding up external forcings by a factors of 10, modeling the last 120 kyrs

Part Ten – GCM IV – very recent work from 2012, a high resolution GCM called CCSM4, producing glacial inception at 115 kyrs

Pop Quiz: End of An Ice Age – a chance for people to test their ideas about whether solar insolation is the factor that ended the last ice age

Eleven – End of the Last Ice age – latest data showing relationship between Southern Hemisphere temperatures, global temperatures and CO2

Twelve – GCM V – Ice Age Termination – very recent work from He et al 2013, using a high resolution GCM (CCSM3) to analyze the end of the last ice age and the complex link between Antarctic and Greenland

Thirteen – Terminator II – looking at the date of Termination II, the end of the penultimate ice age – and implications for the cause of Termination II

Fourteen – Concepts & HD Data – getting a conceptual feel for the impacts of obliquity and precession, and some ice age datasets in high resolution

Fifteen – Roe vs Huybers – reviewing In Defence of Milankovitch, by Gerard Roe

Sixteen – Roe vs Huybers II – remapping a deep ocean core dataset and updating the previous article

Seventeen – Proxies under Water I – explaining the isotopic proxies and what they actually measure

Eighteen – “Probably Nonlinearity” of Unknown Origin – what is believed and what is put forward as evidence for the theory that ice age terminations were caused by orbital changes

References

Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle, SJ Marshall & PU Clark, GRL (2002) – free paper

North American Ice Sheet reconstructions at the Last Glacial Maximum, SJ Marshall, TS James, GKC Clarke, Quaternary Science Reviews (2002) – free paper

Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, A Abe-Ouchi, T Segawa, and F Saito, Climate of the Past (2007) – free paper

Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Ayako Abe-Ouchi, Fuyuki Saito, Kenji Kawamura, Maureen E. Raymo, Jun’ichi Okuno, Kunio Takahashi & Heinz Blatter, Nature (2013) – paywall paper

Notes

Note 1 – the value of CO2 used in these simulations was 200 ppm, while CO2 at the LGM was actually 180 ppm. Apparently this value of 200 ppm was used in a major inter-comparison project (the PMIP), but I don’t know the reason why. PMIP = Paleoclimate Modelling Intercomparison Project, Joussaume and Taylor, 1995.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 426 other followers