Feeds:
Posts
Comments

Archive for May, 2020

In the last article we looked at the MPI model – comparisons of 2081-2100 for different atmospheric CO2 concentrations/emissions with 1979-2005. And comparisons between the MPI historical simulation and observations. These were all on an annual basis.

This article has a lot of graphics – I found it necessary because no one or two perspectives really help to capture the situation. At the end there are some perspectives for people who want to skip through.

In this article we look at similar comparisons to the last article, but seasonal. Mostly winter (northern hemisphere winter), i.e. December, January, February. Then a few comparisons of northern hemisphere summer: June, July, August. The graphics can all be expanded to see the detail better by clicking on them.

Future scenarios vs modeled history

Here we see the historical simulation over DJF 1979-2005 (1st graph) followed by the three scenarios, RCP2.6, RCP4.5, RCP8.5 over DJF 2080-2099:

Figure 1 – DJF Simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

Now the results are displayed as a difference from the historical simulation. Positive is more rainfall in the future simulation, negative is less rainfall:

Figure 2 – DJF Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

And the % change. The Saharan changes look dramatic, but it’s very low rainfall turning to zero, at least in the model. For example, I picked one grid square, 20ºN, 0ºE, and the historical simulated rainfall was 0.2mm/month, under RCP2.6 0.05mm/month and for RCP8.6 0mm/month.

Figure 3 – DJF Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

I zoomed in on Australia – each graph is absolute values. The first is the historical simulation, then the 2nd, 3rd, 4th are the 3 RCPs as before:

Figure 4 – DJF Australia – simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

Then differences from the historical simulation:

Figure 5 – DJF Australia – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

Then percentage changes from the historical simulation:

Figure 6 – DJF Australia – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

And the same for Europe – each graph is absolute values. The first is the historical simulation, then the 2nd, 3rd, 4th are the 3 RCPs as before:

Figure 7 – DJF Europe – simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

Then differences from the historical simulation:

Figure 8 – DJF Europe – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

Then percentage changes from the historical simulation:

Figure 9 – DJF Europe – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

Now the global picture for northern hemisphere summer, June July August. First, absolute for the model for historical, then absolute for each RCP:

Figure 10 – JJA Simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

Now the results are displayed as a difference from the historical simulation. Positive is more rainfall in the future simulation, negative is less rainfall:

Figure 11 – JJA Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

And the % change:

Figure 12 – JJA Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

Modeled History vs Observational History

As in the last article, how the historical model compares with observations over the same period but for DJF. The GPCC observational data on the left and the median of all the historical simulations from the three MPI models (8 simulations total) on the right:

Figure 13 – DJF 1979-2005 GPCC Observational data & Median of all MPI historical simulations – Click to expand

The difference, so blue means the model produces more rain than reality, while red means the model produces less rain:

Figure 14 – DJF 1979-2005 Median of all MPI historical simulations less GPCC Observational data – Click to expand

And percentage change:

Figure 15 – DJF 1979-2005 Median of all MPI historical simulations as % of GPCC Observational data – Click to expand

Some Perspectives

Now let’s look at annual, DJF and JJA for how simulation compare with observations, this is median MPI less GPCC – like figure 13. You can click to expand the image:

Figure 16 – Annual/seasons 1979-2005 Median of all MPI historical simulations less GPCC Observational data – Click to expand

Another perspective, compare projections of climate change with model skill. Top is skill (MPI simulation of DJF 1979-2005 less GPCC observation), bottom left is 2081-2100 RCP2.6 less MPI simulation, bottom right is RCP8.5 less MPI simulation:

Figure 17 – DJF Compare model skill with projections of climate change for RCP2.6 & RCP8.5 – Click to expand

So let’s look at it another way.

Let’s look at the projected rainfall change for RCP2.6 and RCP8.5 vs actual observations. That is, MPI median DJF 2081-2099 less GPCC DJF 1979-2005:

Figure 18 – DJF Compare model projections with actual historical – Click to expand

And the same for annual:

Figure 19 – Annual Compare model projections with actual historical – Click to expand

Let’s just compare the same two RCPs with model projections of climate change (as they are usually displayed, future less model historical):

Figure 20 – For contrast, as figure 19 but compare with model historical – Click to expand

If we look at SW Africa, for example, we see a progressive drying from RCP2.6 (drastic cuts in CO2 emissions) to RCP8.5 (very high emissions). But if we look at figure 19 then the model projections at the end of the century for that region have more rainfall than current.

If we look at California we see the same kind of progressive drying. But compare model projections with observations and we see more rainfall in California under both those scenarios.

Of course, this just reflects the fact that climate models have issues with simulating rainfall, something that everyone in climate modeling knows. But it’s intriguing.

In the next article we’ll look at another model.

References

An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/

GPCC data provided from https://psl.noaa.gov/data/gridded/data.gpcc.html

CMIP5 data provided by the portal at https://esgf-data.dkrz.de/search/cmip5-dkrz/

The representative concentration pathways: an overview, van Vuuren et al, Climatic Change (2011)

Read Full Post »

If you look at model outputs for rainfall in the last IPCC report, or in most papers, it’s difficult to get a feel for what models produce, how they compare with each other, and how they compare with observational data. It’s common to just show the median of all models.

In this, and some subsequent articles, I’ll try and provide some level of detail.

Here are some comparisons from a set of models from the Max Planck Institute for Meteorology. MPI is just one of about 20 climate modeling centers around the world. They took part in the Climate Model Intercomparison Project (CMIP5). As part of that project, for the IPCC 5th assessment report (AR5), they ran a number of simulations. Details of CMIP5 in the Taylor et al reference below.

Future scenarios vs modeled history

Here is the % change in rainfall – 2081-2100 vs 1979-2005 from one of the MPI models (MPI-ESM-LR) for 3 scenarios. The median of 3 runs for each scenario is compared with the median of 3 runs for the historical period, and we see the % change:

Figure 1 – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

The scenarios (Representative Concentration Pathways) in brief (and see van Vuuren reference below):

We can see that rcp 2.6 has some small reductions in rainfall in northern Africa, Middle East and a few other regions. RCP 8.5 has large areas of greatly reduced rainfall in northern Africa, Middle East , SW Africa, the Amazon, and SW Australia.

So from a model only point of view the less emissions the better.

It’s common to find that RCP6 is not modeled, something that I find difficult to understand. I understand that computing time is valuable but RCP6 seems like the emissions pathway we are currently on.

Perhaps it should be explicitly stated that the simulation results of RCP4.5 and RCP6 are effectively identical – if that is in fact the case. That by itself would be useful information given that there is a substantial difference in CO2 emissions between them.

I had a look at a couple of regions of interest – Australia:

Figure 2 – Australia – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

And Europe:

Figure 3 – Europe – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

Modeled History vs Observational History

Here we compare the historical MPI model runs with observations (GPCC). MPI has 3 models and a total of 8 runs:

  • MPI-ESM-LR (3 simulations)
  • MPI-ESM-MR (3 simulations)
  • MPI-ESM-P (2 simulations)

Each model that takes part in CMIP5 produces one or more simulations over identical ‘historical’ conditions (our best estimate of them) from 1850-2005.

I compared the median of each model with GPCC over the last 27 years of the ‘historical’ period, 1979-2005:

Figure 4 – The median of simulations from each MPI model vs observation 1979-2005 – Click to expand

And the % difference of each MPI model vs GPCC over the same period:

Figure 5 – The median of simulations from each MPI model, % change over observation 1979-2005 – Click to expand

The different models appear quite similar. So let’s take the median of all 8 runs across the 3 models and compare with observations (GPCC) for clarity (the graph title isn’t quite correct, this is across the 3 models):

Figure 6 – The median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

The same, highlighting Australia:

Figure 7 – Australia – median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

And highlighting Europe:

 

Figure 8 – Europe – median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

I’m not trying to draw any big conclusions here, more interested in showing what model results look like.

But the one thing that stands out in a first look, at least to me – the difference between the MPI model and observations (over the same time period) is more substantial than the difference between the MPI model for 2080-2100 and the MPI model for recent history, even for an extreme CO2 scenario (RCP8.5).

If you want to draw conclusions from a climate model on rainfall, should you compare the future simulations with the simulation of the recent past? Or future simulations with actual observations? Or should you compare past simulations with actual and then decide whether to compare future simulations with anything?

References

An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/

GPCC data provided from https://psl.noaa.gov/data/gridded/data.gpcc.html

CMIP5 data provided by the portal at https://esgf-data.dkrz.de/search/cmip5-dkrz/

The representative concentration pathways: an overview, van Vuuren et al, Climatic Change (2011)

Read Full Post »

Here’s an extract from a paper by Mehran et al 2014, comparing climate models with observations, over the same 1979-2005 time period:

From Mehran et al 2014

Click to enlarge

The graphs show the ratios of models to observations. Therefore, green is optimum, red means the model is producing too much rain, while blue means the model is producing too little rain (slightly counter-intuitive for rainfall and I’ll be showing data with colors reversed).

You can easily see that as well as models struggling to reproduce reality, models can be quite different from each other, for example the MPI model has very low rainfall for lots of Australia, whereas the NorESM model has very high rainfall. In other regions sometimes the models mostly lean the same way, for example NW US and W Canada.

For people who understand some level of detail about how models function it’s not a surprise that rainfall is more challenging than temperature (see Opinions and Perspectives – 6 – Climate Models, Consensus Myths and Fudge Factors).

But this challenge makes me wonder about drawing a solid black line through the median and expecting something useful to appear.

Here is an extract from the recent IPCC 1.5 report:

Global Warming of 1.5°C. An IPCC Special Report

I’ll try to shine some light on the outputs of rainfall in climate models in subsequent articles.

References

Note: these papers should be easily accessible without a paywall, just use scholar.google.com and type in the title.

Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations, Mehran, AghaKouchak, & Phillips, Journal of Geophysical Research: Atmospheres (2014)

The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), Adler et al, American Meteorological Society (2003)

Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J. Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)].

The datasets are accessible in websites below – there are options to plot specific regions, within specific dates, and to download the whole dataset as a .nc file.

GPCC – https://psl.noaa.gov/data/gridded/data.gpcc.html

GPCP – https://psl.noaa.gov/data/gridded/data.gpcp.html

Read Full Post »

I have just been looking at the GPCC dataset, using Matlab to extract and plot monthly data for different time periods including comparisons. I’d like to compare actual with the output of various climate models over similar time periods – and against future simulations under different scenarios.

Have any readers of the blog done this? If so I’d appreciate a few tips having run into a few dead ends.

What I’m looking for – monthly gridded surface precipitation.

GPCC has 0.5ºx0.5º and 2.5ºx2.5º datasets that I’ve downloaded so the same gridded output from models would be wonderful.

I have found:

–  The CMIP5 Data is now available through the new portal, the Earth System Grid – Center for Enabling Technologies (ESG-CET), on the page http://esgf-node.llnl.gov/

–  https://www.wcrp-climate.org/wgcm/references/IPCC_standard_output.pdf

Table A1a: Monthly-mean 2-d atmosphere or land surface data (longitude, latitude, time:month).

CF standard_name; output; variable name;  units;  notes  –
precipitation_flux; pr; kg m-2 s-1;   includes both liquid and solid phases.

So I think this is what I am looking for.

–  https://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html gives a list of different experiments within each climate model. For example – the MPI model, I expect that historical and rcp.. are the ones I want. I would have to dig into MPI-ESM-LR and -MR which I assume are different model resolutions.

But when I work my way through the portal, e.g. https://esgf-data.dkrz.de/search/cmip5-dkrz/ I find a bewildering array of options and after hopefully culling it down to just monthly rainfall from the MPI-LR model, there are 213 files:

I can easily imagine spending 100+ hours trying to establish which files are correct, trying to verify.. So, if any readers have the knowledge it would be much appreciated.

————

Just for interest, here are a few graphs produced from GPCC using Matlab. I checked a couple of outputs against samples produced from their website and they seemed correct.

I set the max monthly rainfall on the color axis to increase contrast for most places in the world – 4 different 10-year periods:

GPCC Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/

And a delta, % difference:

GPCC Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/

Read Full Post »