Feeds:
Posts
Comments

Archive for December, 2014

In Part Three – Attribution & Fingerprints we looked at an early paper in this field, from 1996. I was led there by following back through many papers referenced from AR5 Chapter 10. The lead author of that paper, Gabriele Hegerl, has made a significant contribution to the 3rd report, 4th and 5th IPCC reports on attribution.

We saw in Part Three that this particular paper ascribed a probability:

We find that the latest observed 30-year trend pattern of near-surface temperature change can be distinguished from all estimates of natural climate variability with an estimated risk of less than 2.5% if the optimal fingerprint is applied.

That paper did note that greatest uncertainty was in understanding the magnitude of natural variability. This is an essential element of attribution.

It wasn’t explicitly stated whether the 97.5% confidence was with the premise that natural variability was accurately understood in 1996. I believe that this was the premise. I don’t know what confidence would have been ascribed to the attribution study if uncertainty over natural variability was included.

IPCC AR5

In this article we will look at the IPCC 5th report, AR5, and see how this field has progressed, specifically in regard to the understanding of natural variability. Chapter 10 covers Detection and Attribution of Climate Change.

From p.881 (the page numbers are from the start of the whole report, chapter 10 has just over 60 pages plus references):

Since the AR4, detection and attribution studies have been carried out using new model simulations with more realistic forcings, and new observational data sets with improved representation of uncertainty (Christidis et al., 2010; Jones et al., 2011, 2013; Gillett et al., 2012, 2013; Stott and Jones, 2012; Knutson et al., 2013; Ribes and Terray, 2013).

Let’s have a look at these papers (see note 1 on CMIP3 & CMIP5).

I had trouble understanding AR5 Chapter 10 because there was no explicit discussion of natural variability. The papers referenced (usually) have their own section on natural variability, but chapter 10 doesn’t actually cover it.

I emailed Geert Jan van Oldenborgh to ask for help. He is the author of one paper we will briefly look at here – his paper was very interesting and he had a video segment explaining his paper. He suggested the problem was more about communication because natural variability was covered in chapter 9 on models. He had written a section in chapter 11 that he pointed me towards, so this article became something that tried to grasp the essence of three chapters (9 – 11), over 200 pages of reports and several pallet loads of papers.

So I’m not sure I can do the synthesis justice, but what I will endeavor to do in this article is demonstrate the minimal focus (in IPCC AR5) on how well models represent natural variability.

That subject deserves a lot more attention, so this article will be less about what natural variability is, and more about how little focus it gets in AR5. I only arrived here because I was determined to understand “fingerprints” and especially the rationale behind the certainties ascribed.

Subsequent articles will continue the discussion on natural variability.

Knutson et al 2013

The models [CMIP5] are found to provide plausible representations of internal climate variability, although there is room for improvement..

..The modeled internal climate variability from long control runs is used to determine whether observed and simulated trends are consistent or inconsistent. In other words, we assess whether observed and simulated forced trends are more extreme than those that might be expected from random sampling of internal climate variability.

Later

The model control runs exhibit long-term drifts. The magnitudes of these drifts tend to be larger in the CMIP3 control runs than in the CMIP5 control runs, although there are exceptions. We assume that these drifts are due to the models not being in equilibrium with the control run forcing, and we remove the drifts by a linear trend analysis (depicted by the orange straight lines in Fig. 1). In some CMIP3 cases, the drift initially proceeds at one rate, but then the trend becomes smaller for the remainder of the run. We approximate the drift in these cases by two separate linear trend segments, which are identified in the figure by the short vertical orange line segments. These long-term drift trends are removed to produce the drift corrected series.

[Emphasis added].

Another paper suggests this assumption might not be correct. Here is Jones, Stott and Christidis (2013) – “piControl” are the natural variability model simulations:

Often a model simulation with no changes in external forcing (piControl) will have a drift in the climate diagnostics due to various flux imbalances in the model [Gupta et al., 2012]. Some studies attempt to account for possible model climate drifts, for instance Figure 9.5 in Hegerl et al. [2007] did not include transient simulations of the 20th century if the long-term trend of the piControl was greater in magnitude than 0.2 K/century (Appendix 9.C in Hegerl et al. [2007]).

Another technique is to remove the trend, from the transient simulations, deduced from a parallel section of piControl [e.g., Knutson et al., 2006]. However whether one should always remove the piControl trend, and how to do it in practice, is not a trivial issue [Taylor et al., 2012; Gupta et al., 2012]..

..We choose not to remove the trend from the piControl from parallel simulations of the same model in this study due to the impact it would have on long-term variability, i.e., the possibility that part of the trend in the piControl may be long-term internal variability that may or may not happen in a parallel experiment when additional forcing has been applied.

Here are further comments from Knutson et al 2013:

Five of the 24 CMIP3 models, identified by “(-)” in Fig. 1, were not used, or practically not used, beyond Fig. 1 in our analysis. For instance, the IAP_fgoals1.0.g model has a strong discontinuity near year 200 of the control run. We judge this as likely an artifact due to some problem with the model simulation, and we therefore chose to exclude this model from further analysis

From Knutson et al 2013

From Knutson et al 2013

Figure 1

Perhaps this is correct. Or perhaps the jump in simulated temperature is the climate model capturing natural climate variability.

The authors do comment:

As noted by Wittenberg (2009) and Vecchi and Wittenberg (2010), long-running control runs suggest that internally generated SST variability, at least in the ENSO region, can vary substantially between different 100-yr periods (approximately the length of record used here for observations), which again emphasizes the caution that must be placed on comparisons of modeled vs. observed internal variability based on records of relatively limited duration.

The first paper referenced, Wittenberg 2009, was the paper we looked at in Part Six – El Nino.

So is the “caution” that comes from that study included in the probability of our models ability to simulate natural variability?

In reality, questions about internal variability are not really discussed. Trends are removed, models with discontinuities are artifacts. What is left? This paper essentially takes the modeling output from the CMIP3 and CMIP5 archives (with and without GHG forcing) as a given and applies some tests.

Ribes & Terray 2013

This was a “Part II” paper and they said:

We use the same estimates of internal variability as in Ribes et al. 2013 [the “Part I”].

These are based on intra-ensemble variability from the above CMIP5 experiments as well as pre-industrial simulations from both the CMIP3 and CMIP5 archives, leading to a much larger sample than previously used (see Ribes et al. 2013 for details about ensembles). We then implicitly assume that the multi-model internal variability estimate is reliable.

[Emphasis added]. The Part I paper said:

An estimate of internal climate variability is required in detection and attribution analysis, for both optimal estimation of the scaling factors and uncertainty analysis.

Estimates of internal variability are usually based on climate simulations, which may be control simulations (i.e. in the present case, simulations with no variations in external forcings), or ensembles of simulations with the same prescribed external forcings.

In the latter case, m – 1 independent realisations of pure internal variability may be obtained by subtracting the ensemble mean from each member (assuming again additivity of the responses) and rescaling the result by a factor √(m/(m-1)) , where m denotes the number of members in the ensemble.

Note that estimation of internal variability usually means estimation of the covariance matrix of a spatio-temporal climate-vector, the dimension of this matrix potentially being high. We choose to use a multi-model estimate of internal climate variability, derived from a large ensemble of climate models and simulations. This multi-model estimate is subject to lower sampling variability and better represents the effects of model uncertainty on the estimate of internal variability than individual model estimates. We then simultaneously consider control simulations from the CMIP3 and CMIP5 archives, and ensembles of historical simulations (including simulations with individual sets of forcings) from the CMIP5 archive.

All control simulations longer than 220 years (i.e. twice the length of our study period) and all ensembles (at least 2 members) are used. The overall drift of control simulations is removed by subtracting a linear trend over the full period.. We then implicitly assume that this multi- model internal variability estimate is reliable.

[Emphasis added]. So two approaches to evaluate internal variability – one approach uses GCM runs with no GHG forcing; and the other approach uses the variation between different runs of the same model (with GHG forcing) to estimate natural variability. Drift is removed as “an error”.

Chapter 10 on Spatial Trends

The IPCC report also reviews the spatial simulations compared with spatial observations, p. 880:

Figure 10.2a shows the pattern of annual mean surface temperature trends observed over the period 1901–2010, based on Hadley Centre/ Climatic Research Unit gridded surface temperature data set 4 (Had- CRUT4). Warming has been observed at almost all locations with sufficient observations available since 1901.

Rates of warming are generally higher over land areas compared to oceans, as is also apparent over the 1951–2010 period (Figure 10.2c), which simulations indicate is due mainly to differences in local feedbacks and a net anomalous heat transport from oceans to land under GHG forcing, rather than differences in thermal inertia (e.g., Boer, 2011). Figure 10.2e demonstrates that a similar pattern of warming is simulated in the CMIP5 simulations with natural and anthropogenic forcing over the 1901–2010 period. Over most regions, observed trends fall between the 5th and 95th percentiles of simulated trends, and van Oldenborgh et al. (2013) find that over the 1950–2011 period the pattern of observed grid cell trends agrees with CMIP5 simulated trends to within a combination of model spread and internal variability..

van Oldenborgh et al (2013)

Let’s take a look at van Oldenborgh et al (2013).

There’s a nice video of (I assume) the lead author talking about the paper and comparing the probabilistic approach used in weather forecasts with that of climate models (see Ensemble Forecasting). I recommend the video for a good introduction to the topic of ensemble forecasting.

With weather forecasting the probability comes from running ensembles of weather models and seeing, for example, how many simulations predict rain vs how many do not. The proportion is the probability of rain. With weather forecasting we can continually review how well the probabilities given by ensembles match the reality. Over time we will build up a set of statistics of “probability of rain” and compare with the frequency of actual rainfall. It’s pretty easy to see if the models are over-confident or under-confident.

Here is what the authors say about the problem and how they approached it:

The ensemble is considered to be an estimate of the probability density function (PDF) of a climate forecast. This is the method used in weather and seasonal forecasting (Palmer et al 2008). Just like in these fields it is vital to verify that the resulting forecasts are reliable in the definition that the forecast probability should be equal to the observed probability (Joliffe and Stephenson 2011).

If outcomes in the tail of the PDF occur more (less) frequently than forecast the system is overconfident (underconfident): the ensemble spread is not large enough (too large).

In contrast to weather and seasonal forecasts, there is no set of hindcasts to ascertain the reliability of past climate trends per region. We therefore perform the verification study spatially, comparing the forecast and observed trends over the Earth. Climate change is now so strong that the effects can be observed locally in many regions of the world, making a verification study on the trends feasible. Spatial reliability does not imply temporal reliability, but unreliability does imply that at least in some areas the forecasts are unreliable in time as well. In the remainder of this letter we use the word ‘reliability’ to indicate spatial reliability.

[Emphasis added]. The paper first shows the result for one location, the Netherlands, with the spread of model results vs the actual result from 1950-2011:

from van Oldenborgh et al 2013

from van Oldenborgh et al 2013

Figure 2

We can see that the models are overall mostly below the observation. But this is one data point. So if we compared all of the datapoints – and this is on a grid of 2.5º – how do the model spreads compare with the results? Are observations above 95% of the model results only 5% of the time? Or more than 5% of the time? And are observations below 5% of the model results only 5% of the time?

We can see that the frequency of observations in the bottom 5% of model results is about 13% and the frequency of observations in the top 5% of model results is about 20%. Therefore the models are “overconfident” in spatial representation of the last 60 year trends:

van Oldenborgh-2013-fig3

From van Oldenborgh et al 2013

Figure 3

We investigated the reliability of trends in the CMIP5 multi-model ensemble prepared for the IPCC AR5. In agreement with earlier studies using the older CMIP3 ensemble, the temperature trends are found to be locally reliable. However, this is due to the differing global mean climate response rather than a correct representation of the spatial variability of the climate change signal up to now: when normalized by the global mean temperature the ensemble is overconfident. This agrees with results of Sakaguchi et al (2012) that the spatial variability in the pattern of warming is too small. The precipitation trends are also overconfident. There are large areas where trends in both observational dataset are (almost) outside the CMIP5 ensemble, leading us to conclude that this is unlikely due to faulty observations.

It’s probably important to note that the author comments in the video “on the larger scale the models are not doing so badly”.

It’s an interesting paper. I’m not clear whether the brief note in AR5 reflects the paper’s conclusions.

Jones et al 2013

It was reassuring to finally find a statement that confirmed what seemed obvious from the “omissions”:

A basic assumption of the optimal detection analysis is that the estimate of internal variability used is comparable with the real world’s internal variability.

Surely I can’t be the only one reading Chapter 10 and trying to understand the assumptions built into the “with 95% confidence” result. If Chapter 10 is only aimed at climate scientists who work in the field of attribution and detection it is probably fine not to actually mention this minor detail in the tight constraints of only 60 pages.

But if Chapter 10 is aimed at a wider audience it seems a little remiss not to bring it up in the chapter itself.

I probably missed the stated caveat in chapter 10’s executive summary or introduction.

The authors continue:

As the observations are influenced by external forcing, and we do not have a non-externally forced alternative reality to use to test this assumption, an alternative common method is to compare the power spectral density (PSD) of the observations with the model simulations that include external forcings.

We have already seen that overall the CMIP5 and CMIP3 model variability compares favorably across different periodicities with HadCRUT4-observed variability (Figure 5). Figure S11 (in the supporting information) includes the PSDs for each of the eight models (BCC-CSM1-1, CNRM-CM5, CSIRO- Mk3-6-0, CanESM2, GISS-E2-H, GISS-E2-R, HadGEM2- ES and NorESM1-M) that can be examined in the detection analysis.

Variability for the historical experiment in most of the models compares favorably with HadCRUT4 over the range of periodicities, except for HadGEM2-ES whose very long period variability is lower due to the lower overall trend than observed and for CanESM2 and bcc-cm1-1 whose decadal and higher period variability are larger than observed.

While not a strict test, Figure S11 suggests that the models have an adequate representation of internal variability—at least on the global mean level. In addition, we use the residual test from the regression to test whether there are any gross failings in the models representation of internal variability.

Figure S11 is in the supplementary section of the paper:

From Jones et al 2013, figure S11

From Jones et al 2013, figure S11

Figure 4

From what I can see, this demonstrates that the spectrum of the models’ internal variability (“historicalNat”) is different from the spectrum of the models’ forced response with GHG changes (“historical”).

It feels like my quantum mechanics classes all over again. I’m probably missing something obvious, and hopefully knowledgeable readers can explain.

Chapter 9 of AR5 – Climate Models’ Representation of Internal Variability

Chapter 9, reviewing models, stretches to over 80 pages. The section on internal variability is section 9.5.1:

However, the ability to simulate climate variability, both unforced internal variability and forced variability (e.g., diurnal and seasonal cycles) is also important. This has implications for the signal-to-noise estimates inherent in climate change detection and attribution studies where low-frequency climate variability must be estimated, at least in part, from long control integrations of climate models (Section 10.2).

Section 9.5.3:

In addition to the annual, intra-seasonal and diurnal cycles described above, a number of other modes of variability arise on multi-annual to multi-decadal time scales (see also Box 2.5). Most of these modes have a particular regional manifestation whose amplitude can be larger than that of human-induced climate change. The observational record is usually too short to fully evaluate the representation of variability in models and this motivates the use of reanalysis or proxies, even though these have their own limitations.

Figure 9.33a shows simulated internal variability of mean surface temperature from CMIP5 pre-industrial control simulations. Model spread is largest in the tropics and mid to high latitudes (Jones et al., 2012), where variability is also large; however, compared to CMIP3, the spread is smaller in the tropics owing to improved representation of ENSO variability (Jones et al., 2012). The power spectral density of global mean temperature variance in the historical simulations is shown in Figure 9.33b and is generally consistent with the observational estimates. At longer time scale of the spectra estimated from last millennium simulations, performed with a subset of the CMIP5 models, can be assessed by comparison with different NH temperature proxy records (Figure 9.33c; see Chapter 5 for details). The CMIP5 millennium simulations include natural and anthropogenic forcings (solar, volcanic, GHGs, land use) (Schmidt et al., 2012).

Significant differences between unforced and forced simulations are seen for time scale larger than 50 years, indicating the importance of forced variability at these time scales (Fernandez-Donado et al., 2013). It should be noted that a few models exhibit slow background climate drift which increases the spread in variance estimates at multi-century time scales.

Nevertheless, the lines of evidence above suggest with high confidence that models reproduce global and NH temperature variability on a wide range of time scales.

[Emphasis added]. Here is fig 9.33:

From IPCC AR5 Chapter 10

From IPCC AR5 Chapter 10

Figure 5 – Click to Expand

The bottom graph shows the spectra of the last 1,000 years – black line is observations (reconstructed from proxies), dashed lines are without GHG forcings, and solid lines are with GHG forcings.

In later articles we will review this in more detail.

Conclusion

The IPCC report on attribution is very interesting. Most attribution studies compare observations of the last 100 – 150 years with model simulations using anthropogenic GHG changes and model simulations without (note 3).

The results show a much better match for the case of the anthropogenic forcing.

The primary method is with global mean surface temperature, with more recent studies also comparing the spatial breakdown. We saw one such comparison with van Oldenborgh et al (2013). Jones et al (2013) also reviews spatial matching, finding a better fit (of models & observations) for the last half of the 20th century than the first half. (As with van Oldenborgh’s paper, the % match outside 90% of model results was greater than 10%).

My question as I first read Chapter 10 was how was the high confidence attained and what is a fingerprint?

I was led back, by following the chain of references, to one of the early papers on the topic (1996) that also had similar high confidence. (We saw this in Part Three). It was intriguing that such confidence could be attained with just a few “no forcing” model runs as comparison, all of which needed “flux adjustment”. Current models need much less, or often zero, flux adjustment.

In later papers reviewed in AR5, “no forcing” model simulations that show temperature trends or jumps are often removed or adjusted.

I’m not trying to suggest that “no forcing” GCM simulations of the last 150 years have anything like the temperature changes we have observed. They don’t.

But I was trying to understand what assumptions and premises were involved in attribution. Chapter 10 of AR5 has been valuable in suggesting references to read, but poor at laying out the assumptions and premises of attribution studies.

For clarity, as I stated in Part Three:

..as regular readers know I am fully convinced that the increases in CO2, CH4 and other GHGs over the past 100 years or more can be very well quantified into “radiative forcing” and am 100% in agreement with the IPCCs summary of the work of atmospheric physics over the last 50 years on this topic. That is, the increases in GHGs have led to something like a “radiative forcing” of 2.8 W/m²..

..Therefore, it’s “very likely” that the increases in GHGs over the last 100 years have contributed significantly to the temperature changes that we have seen.

So what’s my point?

Chapter 10 of the IPCC report fails to highlight the important assumptions in the attribution studies. Chapter 9 of the IPCC report has a section on centennial/millennial natural variability with a “high confidence” conclusion that comes with little evidence and appears to be based on a cursory comparison of the spectral results of the last 1,000 years proxy results with the CMIP5 modeling studies.

In chapter 10, the executive summary states:

..given that observed warming since 1951 is very large compared to climate model estimates of internal variability (Section 10.3.1.1.2), which are assessed to be adequate at global scale (Section 9.5.3.1), we conclude that it is virtually certain [99-100%] that internal variability alone cannot account for the observed global warming since 1951.

[Emphasis added]. I agree, and I don’t think anyone who understands radiative forcing and climate basics would disagree. To claim otherwise would be as ridiculous as, for example, claiming that tiny changes in solar insolation from eccentricity modifications over 100 kyrs cause the end of ice ages, whereas large temperature changes during these ice ages have no effect (see note 2).

The executive summary also says:

It is extremely likely [95–100%] that human activities caused more than half of the observed increase in GMST from 1951 to 2010.

The idea is plausible, but the confidence level is dependent on a premise that is claimed via one graph (fig 9.33) of the spectrum of the last 1,000 years. High confidence (“that models reproduce global and NH temperature variability on a wide range of time scales”) is just an opinion.

It’s crystal clear, by inspection of CMIP3 and CMIP5 model results, that models with anthropogenic forcing match the last 150 years of temperature changes much better than models held at constant pre-industrial forcing.

I believe natural variability is a difficult subject which needs a lot more than a cursory graph of the spectrum of the last 1,000 years to even achieve low confidence in our understanding.

Chapters 9 & 10 of AR5 haven’t investigated “natural variability” at all. For interest, some skeptic opinions are given in note 4.

I propose an alternative summary for Chapter 10 of AR5:

It is extremely likely [95–100%] that human activities caused more than half of the observed increase in GMST from 1951 to 2010, but this assessment is subject to considerable uncertainties.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Multi-model assessment of regional surface temperature trends, TR Knutson, F Zeng & AT Wittenberg, Journal of Climate (2013) – free paper

Attribution of observed historical near surface temperature variations to anthropogenic and natural causes using CMIP5 simulations, Gareth S Jones, Peter A Stott & Nikolaos Christidis, Journal of Geophysical Research Atmospheres (2013) – paywall paper

Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature, Aurélien Ribes & Laurent Terray, Climate Dynamics (2013) – free paper

Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis, Aurélien Ribes, Serge Planton & Laurent Terray, Climate Dynamics (2013) – free paper

Reliability of regional climate model trends, GJ van Oldenborgh, FJ Doblas Reyes, SS Drijfhout & E Hawkins, Environmental Research Letters (2013) – free paper

Notes

Note 1: CMIP = Coupled Model Intercomparison Project. CMIP3 was for AR4 and CMIP5 was for AR5.

Read about CMIP5:

At a September 2008 meeting involving 20 climate modeling groups from around the world, the WCRP’s Working Group on Coupled Modelling (WGCM), with input from the IGBP AIMES project, agreed to promote a new set of coordinated climate model experiments. These experiments comprise the fifth phase of the Coupled Model Intercomparison Project (CMIP5). CMIP5 will notably provide a multi-model context for

1) assessing the mechanisms responsible for model differences in poorly understood feedbacks associated with the carbon cycle and with clouds

2) examining climate “predictability” and exploring the ability of models to predict climate on decadal time scales, and, more generally

3) determining why similarly forced models produce a range of responses…

From the website link above you can read more. CMIP5 is a substantial undertaking, with massive output of data from the latest climate models. Anyone can access this data, similar to CMIP3. Here is the Getting Started page.

And CMIP3:

In response to a proposed activity of the World Climate Research Programme (WCRP) Working Group on Coupled Modelling (WGCM), PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science.

This unprecedented collection of recent model output is officially known as the “WCRP CMIP3 multi-model dataset.” It is meant to serve IPCC’s Working Group 1, which focuses on the physical climate system — atmosphere, land surface, ocean and sea ice — and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it.

With the consent of participating climate modelling groups, the WGCM has declared the CMIP3 multi-model dataset open and free for non-commercial purposes. After registering and agreeing to the “terms of use,” anyone can now obtain model output via the ESG data portal, ftp, or the OPeNDAP server.

As of July 2009, over 36 terabytes of data were in the archive and over 536 terabytes of data had been downloaded among the more than 2500 registered users

Note 2: This idea is explained in Ghosts of Climates Past -Eighteen – “Probably Nonlinearity” of Unknown Origin – what is believed and what is put forward as evidence for the theory that ice age terminations were caused by orbital changes, see especially the section under the heading: Why Theory B is Unsupportable.

Note 3: Some studies use just fixed pre-industrial values, and others compare “natural forcings” with “no forcings”.

“Natural forcings” = radiative changes due to solar insolation variations (which are not known with much confidence) and aerosols from volcanos. “No forcings” is simply fixed pre-industrial values.

Note 4: Chapter 11 (of AR5), p.982:

For the remaining projections in this chapter the spread among the CMIP5 models is used as a simple, but crude, measure of uncertainty. The extent of agreement between the CMIP5 projections provides rough guidance about the likelihood of a particular outcome. But—as partly illustrated by the discussion above—it must be kept firmly in mind that the real world could fall outside of the range spanned by these particular models. See Section 11.3.6 for further discussion.

And p. 1004:

It is possible that the real world might follow a path outside (above or below) the range projected by the CMIP5 models. Such an eventuality could arise if there are processes operating in the real world that are missing from, or inadequately represented in, the models. Two main possibilities must be considered: (1) Future radiative and other forcings may diverge from the RCP4.5 scenario and, more generally, could fall outside the range of all the RCP scenarios; (2) The response of the real climate system to radiative and other forcing may differ from that projected by the CMIP5 models. A third possibility is that internal fluctuations in the real climate system are inadequately simulated in the models. The fidelity of the CMIP5 models in simulating internal climate variability is discussed in Chapter 9..

..The response of the climate system to radiative and other forcing is influenced by a very wide range of processes, not all of which are adequately simulated in the CMIP5 models (Chapter 9). Of particular concern for projections are mechanisms that could lead to major ‘surprises’ such as an abrupt or rapid change that affects global-to-continental scale climate.

Several such mechanisms are discussed in this assessment report; these include: rapid changes in the Arctic (Section 11.3.4 and Chapter 12), rapid changes in the ocean’s overturning circulation (Chapter 12), rapid change of ice sheets (Chapter 13) and rapid changes in regional monsoon systems and hydrological climate (Chapter 14). Additional mechanisms may also exist as synthesized in Chapter 12. These mechanisms have the potential to influence climate in the near term as well as in the long term, albeit the likelihood of substantial impacts increases with global warming and is generally lower for the near term.

And p. 1009 (note that we looked at Rowlands et al 2012 in Part Five – Why Should Observations match Models?):

The CMIP3 and CMIP5 projections are ensembles of opportunity, and it is explicitly recognized that there are sources of uncertainty not simulated by the models. Evidence of this can be seen by comparing the Rowlands et al. (2012) projections for the A1B scenario, which were obtained using a very large ensemble in which the physics parameterizations were perturbed in a single climate model, with the corresponding raw multi-model CMIP3 projections. The former exhibit a substantially larger likely range than the latter. A pragmatic approach to addressing this issue, which was used in the AR4 and is also used in Chapter 12, is to consider the 5 to 95% CMIP3/5 range as a ‘likely’ rather than ‘very likely’ range.

Replacing ‘very likely’ = 90–100% with ‘likely 66–100%’ is a good start. How does this recast chapter 10?

And Chapter 1 of AR5, p. 138:

Model spread is often used as a measure of climate response uncertainty, but such a measure is crude as it takes no account of factors such as model quality (Chapter 9) or model independence (e.g., Masson and Knutti, 2011; Pennell and Reichler, 2011), and not all variables of interest are adequately simulated by global climate models..

..Climate varies naturally on nearly all time and space scales, and quantifying precisely the nature of this variability is challenging, and is characterized by considerable uncertainty.

[Emphasis added in all bold sections above]

Read Full Post »

In (still) writing what was to be Part Six (Attribution in AR5 from the IPCC), I was working through Knutson et al 2013, one of the papers referenced by AR5. That paper in turn referenced Are historical records sufficient to constrain ENSO simulations? [link corrected] by Andrew Wittenberg (2009). This is a very interesting paper and I was glad to find it because it illustrates some of the points we have been looking at.

It’s an easy paper to read (and free) and so I recommend reading the whole paper.

The paper uses NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 global coupled atmosphere/ocean/land/ice GCM (see note 1 for reference and description):

CM2.1 played a prominent role in the third Coupled Model Intercomparison Project (CMIP3) and the Fourth Assessment of the Intergovernmental Panel on Climate Change (IPCC), and its tropical and ENSO simulations have consistently ranked among the world’s top GCMs [van Oldenborgh et al., 2005; Wittenberg et al., 2006; Guilyardi, 2006; Reichler and Kim, 2008].

The coupled pre-industrial control run is initialized as by Delworth et al. [2006], and then integrated for 2220 yr with fixed 1860 estimates of solar irradiance, land cover, and atmospheric composition; we focus here on just the last 2000 yr. This simulation required one full year to run on 60 processors at GFDL.

First of all we see the challenge for climate models – a reasonable resolution coupled GCM running just one 2000-year simulation consumed one year of multiple processor time.

Wittenberg shows the results in the graph below. At the top is our observational record going back 140 years, then below are the simulation results of the SST variation in the El Nino region broken into 20 century-long segments.

From Wittenberg 2009

From Wittenberg 2009

 Figure 1 – Click to Expand

What we see is that different centuries have very different results:

There are multidecadal epochs with hardly any variability (M5); epochs with intense, warm-skewed ENSO events spaced five or more years apart (M7); epochs with moderate, nearly sinusoidal ENSO events spaced three years apart (M2); and epochs that are highly irregular in amplitude and period (M6). Occasional epochs even mimic detailed temporal sequences of observed ENSO events; e.g., in both R2 and M6, there are decades of weak, biennial oscillations, followed by a large warm event, then several smaller events, another large warm event, and then a long quiet period. Although the model’s NINO3 SST variations are generally stronger than observed, there are long epochs (like M1) where the ENSO amplitude agrees well with observations (R1).

Wittenberg comments on the problem for climate modelers:

An unlucky modeler – who by chance had witnessed only M1-like variability throughout the first century of simulation – might have erroneously inferred that the model’s ENSO amplitude matched observations, when a longer simulation would have revealed a much stronger ENSO.

If the real-world ENSO is similarly modulated, then there is a more disturbing possibility. Had the research community been unlucky enough to observe an unrepresentative ENSO over the past 150 yr of measurements, then it might collectively have misjudged ENSO’s longer-term natural behavior. In that case, historically-observed statistics could be a poor guide for modelers, and observed trends in ENSO statistics might simply reflect natural variations..

..A 200 yr epoch of consistently strong variability (M3) can be followed, just one century later, by a 200 yr epoch of weak variability (M4). Documenting such extremes might thus require a 500+ yr record. Yet few modeling centers currently attempt simulations of that length when evaluating CGCMs under development – due to competing demands for high resolution, process completeness, and quick turnaround to permit exploration of model sensitivities.

Model developers thus might not even realize that a simulation manifested long-term ENSO modulation, until long after freezing the model development. Clearly this could hinder progress. An unlucky modeler – unaware of centennial ENSO modulation and misled by comparisons between short, unrepresentative model runs – might erroneously accept a degraded model or reject an improved model.

[Emphasis added].

Wittenberg shows the same data in the frequency domain and has presented the data in a way that illustrates the different perspective you might have depending upon your period of observation or period of model run. It’s worth taking the time to understand what is in these graphs:

From Wittenberg 2009

From Wittenberg 2009

Figure 2 – Click to Expand

The first graph, 2a:

..time-mean spectra of the observations for epochs of length 20 yr – roughly the duration of observations from satellites and the Tropical Atmosphere Ocean (TAO) buoy array. The spectral power is fairly evenly divided between the seasonal cycle and the interannual ENSO band, the latter spanning a broad range of time scales between 1.3 to 8 yr.

So the different colored lines indicate the spectral power for each period. The black dashed line is the observed spectral power over the 140 year (observational) period. This dashed line is repeated in figure 2c.

The second graph, 2b shows the modeled results if we break up the 2000 years into 100 x 20-year periods.

The third graph, 2c, shows the modeled results broken up into 100 year periods. The probability number in the bottom right, 90%, is the likelihood of observations falling outside the range of the model results – if “the simulated subspectra independent and identically distributed.. at bottom right is the probability that an interval so constructed would bracket the next subspectrum to emerge from the model.

So what this says, paraphrasing and over-simplifying: “we are 90% sure that the observations can’t be explained by the models”.

Of course, this independent and identically distributed assumption is not valid, but as we will hopefully get onto many articles further in this series, most of these statistical assumptions – stationary, gaussian, AR1 – are problematic for real world non-linear systems.

To be clear, the paper’s author is demonstrating a problem in such a statistical approach.

Conclusion

Models are not reality. This is a simulation with the GFDL model. It doesn’t mean ENSO is like this. But it might be.

The paper illustrates a problem I highlighted in Part Five – observations are only one “realization” of possible outcomes. The last century or century and a half of surface observations could be an outlier. The last 30 years of satellite data could equally be an outlier. Even if our observational periods are not an outlier and are right there on the mean or median, matching climate models to observations may still greatly under-represent natural climate variability.

Non-linear systems can demonstrate variability over much longer time-scales than the the typical period between characteristic events. We will return to this in future articles in more detail. Such systems do not have to be “chaotic” (where chaotic means that tiny changes in initial conditions cause rapidly diverging results).

What period of time is necessary to capture natural climate variability?

I will give the last word to the paper’s author:

More worryingly, if nature’s ENSO is similarly modulated, there is no guarantee that the 150 yr historical SST record is a fully representative target for model development..

..In any case, it is sobering to think that even absent any anthropogenic changes, the future of ENSO could look very different from what we have seen so far.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Are historical records sufficient to constrain ENSO simulations? Andrew T. Wittenberg, GRL (2009) – free paper

GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, Delworth et al, Journal of Climate, 2006 – free paper

Notes

Note 1: The paper referenced for the GFDL model is GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, Delworth et al, 2006:

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) are described.

The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude x 2.5° longitude; the atmospheric model has 24 vertical levels.

The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extra- tropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovern- mental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

There’s a brief description of the newer model version CM3.0 on the GFDL page.

Read Full Post »

In Part Four – The Thirty Year Myth we looked at the idea of climate as the “long term statistics” of weather. In one case, climate = statistics of weather, has been arbitrarily defined as over a 30 year period. In certain chaotic systems, “long term statistics” might be repeatable and reliable, but “long term” can’t be arbitrarily defined for convenience. Climate, when defined as predictable statistics of weather, might just as well be 100,000 years (note 1)

I’ve had a question about the current approach to climate models for some time and found it difficult to articulate. In reading Broad range of 2050 warming from an observationally constrained large climate model ensemble, Daniel Rowlands et al, Nature (2012) I found an explanation that helps me clarify my question.

This paper by Rowlands et al is similar in approach to that of Stainforth et al 2005 – the idea of much larger ensembles of climate models. The Stainforth paper was discussed in the comments of Models, On – and Off – the Catwalk – Part Four – Tuning & the Magic Behind the Scenes.

For new readers who want to understand a bit more about ensembles of models – take a look at Ensemble Forecasting.

Weather Forecasting

The basic idea behind ensembles for weather forecasts is that we have uncertainty about:

  • the initial conditions – because observations are not perfect
  • parameters in our model – because our understanding of the physics of weather is not perfect

So multiple simulations are run and the frequency of occurrence of, say, a severe storm tells us the probability that the severe storm will occur.

Given the short term nature of weather forecasts we can compare the frequency of occurrence of particular events with the % probability that our ensemble produced.

Let’s take an example to make it clear. Suppose the ensemble prediction of a severe storm in a certain area is 5%. The severe storm occurs. What can we make of the accuracy our prediction? Well, we can’t deduce anything from that event.

Why? Because we only had one occurrence.

Out of a 1000 future forecasts, the “5%ers” are going to occur 50 times – if we are right on the money with our probabilistic forecast. We need a lot of forecasts to be compared with a lot of results. Then we might find that 5%ers actually occur 20% of the time. Or only 1% of the time. Armed with this information we can a) try and improve our model because we know the deficiencies, and b) temper our ensemble forecast with our knowledge of how well it has historically predicted the 5%, 10%, 90% chances of occurrence.

This is exactly what currently happens with numerical weather prediction.

And if instead we run one simulation with our “best estimate” of initial conditions and parameters the results are not as good as the results from the ensemble.

Climate Forecasting

The idea behind ensembles of climate forecasts is subtly different. Initial conditions are no help with predicting the long term statistics (aka “climate”). But we still have a lot of uncertainty over model physics and parameterizations. So we run ensembles of simulations with slightly different physics/parameterizations (see note 2).

Assuming our model is a decent representation of climate, there are three important points:

  1. we need to know the timescale of “predictable statistics”, given constant “external” forcings (e.g. anthropogenic GHG changes)
  2. we need to cover the real range of possible parameterizations
  3. the results we get from ensembles can, at best, only ever give us the probabilities of outcomes over a given time period

Item 1 was discussed in the last article and I have not been able to find any discussion of this timescale in climate science papers (that doesn’t mean there aren’t any, hopefully someone can point me to a discussion of this topic).

Item 2 is something that I believe climate scientists are very interested in. The limitation has been, and still is, the computing power required.

Item 3 is what I want to discuss in this article, around the paper by Rowlands et al.

Rowlands et al 2012

In the latest generation of coupled atmosphere–ocean general circulation models (AOGCMs) contributing to the Coupled Model Intercomparison Project phase 3 (CMIP-3), uncertainties in key properties controlling the twenty-first century response to sustained anthropogenic greenhouse-gas forcing were not fully sampled, partially owing to a correlation between climate sensitivity and aerosol forcing, a tendency to overestimate ocean heat uptake and compensation between short-wave and long-wave feedbacks.

This complicates the interpretation of the ensemble spread as a direct uncertainty estimate, a point reflected in the fact that the ‘likely’ (>66% probability) uncertainty range on the transient response was explicitly subjectively assessed as −40% to +60% of the CMIP-3 ensemble mean for global-mean temperature in 2100, in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The IPCC expert range was supported by a range of sources, including studies using pattern scaling, ensembles of intermediate-complexity models, and estimates of the strength of carbon-cycle feedbacks. From this evidence it is clear that the CMIP-3 ensemble, which represents a valuable expression of plausible responses consistent with our current ability to explore model structural uncertainties, fails to reflect the full range of uncertainties indicated by expert opinion and other methods..

..Perturbed-physics ensembles offer a systematic approach to quantify uncertainty in models of the climate system response to external forcing. Here we investigate uncertainties in the twenty-first century transient response in a multi-thousand-member ensemble of transient AOGCM simulations from 1920 to 2080 using HadCM3L, a version of the UK Met Office Unified Model, as part of the climateprediction.net British Broadcasting Corporation (BBC) climate change experiment (CCE). We generate ensemble members by perturbing the physics in the atmosphere, ocean and sulphur cycle components, with transient simulations driven by a set of natural forcing scenarios and the SRES A1B emissions scenario, and also control simulations to account for unforced model drifts.

[Emphasis added]. So this project runs a much larger ensemble than the CMIP3 models produced for AR4.

Figure 1 shows the evolution of global-mean surface temperatures in the ensemble (relative to 1961–1990), each coloured by the goodness-of-fit to observations of recent surface temperature changes, as detailed below.

Rowlands et al 2012

From Rowlands et al 2012

The raw ensemble range (1.1–4.2 K around 2050), primarily driven by uncertainties in climate sensitivity (Supplementary Information), is potentially misleading because many ensemble members have an unrealistic response to the forcing over the past 50 years.

[Emphasis added]

And later in the paper:

..On the assumption that models that simulate past warming realistically are our best candidates for making estimates of the future..

So here’s my question:

If model simulations give us probabilistic forecasts of future climate, why are climate model simulations “compared” with the average of the last few years current “weather” – and those that don’t match up well are rejected or devalued?

It seems like an obvious thing to do, of course. But current averaged weather might be in the top 10% or the bottom 10% of probabilities. We have no way of knowing.

Let’s say that the current 10-year average of GMST = 13.7ºC (I haven’t looked up the right value).

Suppose for the given “external” conditions (solar output and latitudinal distribution, GHG concentration) the “climate” – i.e., the real long term statistics of weather – has an average of 14.5ºC, with a standard deviation for any 10-year period of 0.5ºC. That is, 95% of 10-year periods would lie inside 13.5 – 15.5ºC (2 std deviations).

If we run a lot of simulations (and they truly represent the climate) then of course we expect 5% to be outside 13.5 – 15.5ºC. If we reject that 5% as being “unrealistic of current climate”, we’ve arbitrarily and incorrectly reduced the spread of our ensemble.

If we assume that “current averaged weather” – at 13.7ºC – represents reality then we might bias our results even more, depending on the standard deviation that we calculate or assume. We might accept outliers of 13.0ºC because they are closer to our observable and reject good simulations of 15.0ºC because they are more than two standard deviations from our observable (note 3).

The whole point of running an ensemble of simulations is to find out what the spread is, given our current understanding of climate physics.

Let me give another example. One theory for initiation of El Nino is that its initiation is essentially a random process during certain favorable conditions. Now we might have a model that reproduced El Nino starting in 1998 and 10 models that reproduced El Nino starting in other years. Do we promote the El Nino model that “predicted in retrospect” 1998 and demote/reject the others? No. We might actually be rejecting better models. We would need to look at the statistics of lots of El Ninos to decide.

Kiehl 2007 & Knutti 2008

Here’s a couple of papers that don’t articulate the point of view of this article – however, they do comment on the uncertainties in parameter space from a different and yet related perspective.

First, Kiehl 2007:

Methods of testing these models with observations form an important part of model development and application. Over the past decade one such test is our ability to simulate the global anomaly in surface air temperature for the 20th century.. Climate model simulations of the 20th century can be compared in terms of their ability to reproduce this temperature record. This is now an established necessary test for global climate models.

Of course this is not a sufficient test of these models and other metrics should be used to test models..

..A review of the published literature on climate simulations of the 20th century indicates that a large number of fully coupled three dimensional climate models are able to simulate the global surface air temperature anomaly with a good degree of accuracy [Houghton et al., 2001]. For example all models simulate a global warming of 0.5 to 0.7°C over this time period to within 25% accuracy. This is viewed as a reassuring confirmation that models to first order capture the behavior of the physical climate system..

One curious aspect of this result is that it is also well known [Houghton et al., 2001] that the same models that agree in simulating the anomaly in surface air temperature differ significantly in their predicted climate sensitivity. The cited range in climate sensitivity from a wide collection of models is usually 1.5 to 4.5°C for a doubling of CO2, where most global climate models used for climate change studies vary by at least a factor of two in equilibrium sensitivity.

The question is: if climate models differ by a factor of 2 to 3 in their climate sensitivity, how can they all simulate the global temperature record with a reasonable degree of accuracy.

Second, Why are climate models reproducing the observed global surface warming so well? Knutti (2008):

The agreement between the CMIP3 simulated and observed 20th century warming is indeed remarkable. But do the current models simulate the right magnitude of warming for the right reasons? How much does the agreement really tell us?

Kiehl [2007] recently showed a correlation of climate sensitivity and total radiative forcing across an older set of models, suggesting that models with high sensitivity (strong feedbacks) avoid simulating too much warming by using a small net forcing (large negative aerosol forcing), and models with weak feedbacks can still simulate the observed warming with a larger forcing (weak aerosol forcing).

Climate sensitivity, aerosol forcing and ocean diffusivity are all uncertain and relatively poorly constrained from the observed surface warming and ocean heat uptake [e.g., Knutti et al., 2002; Forest et al., 2006]. Models differ because of their underlying assumptions and parameterizations, and it is plausible that choices are made based on the model’s ability to simulate observed trends..

..Models, therefore, simulate similar warming for different reasons, and it is unlikely that this effect would appear randomly. While it is impossible to know what decisions are made in the development process of each model, it seems plausible that choices are made based on agreement with observations as to what parameterizations are used, what forcing datasets are selected, or whether an uncertain forcing (e.g., mineral dust, land use change) or feedback (indirect aerosol effect) is incorporated or not.

..Second, the question is whether we should be worried about the correlation between total forcing and climate sensitivity. Schwartz et al. [2007] recently suggested that ‘‘the narrow range of modelled temperatures [in the CMIP3 models over the 20th century] gives a false sense of the certainty that has been achieved’’. Because of the good agreement between models and observations and compensating effects between climate sensitivity and radiative forcing (as shown here and by Kiehl [2007]) Schwartz et al. [2007] concluded that the CMIP3 models used in the most recent Intergovernmental Panel on Climate Change (IPCC) report [IPCC, 2007] ‘‘may give a false sense of their predictive capabilities’’.

Here I offer a different interpretation of the CMIP3 climate models. They constitute an ‘ensemble of opportunity’, they share biases, and probably do not sample the full range of uncertainty [Tebaldi and Knutti, 2007; Knutti et al., 2008]. The model development process is always open to influence, conscious or unconscious, from the participants’ knowledge of the observed changes. It is therefore neither surprising nor problematic that the simulated and observed trends in global temperature are in good agreement.

Conclusion

The idea that climate models should all reproduce global temperature anomalies over a 10-year or 20-year or 30-year time period, presupposes that we know:

a) climate, as the long term statistics of weather, can be reliably obtained over these time periods. Remember that with a simple chaotic system where we have “deity like powers” we can simulate the results and find the time period over which the statistics are reliable.

or

b) climate, as the 10-year (or 20-year or 30-year) statistics of weather is tightly constrained within a small range, to a high level of confidence, and therefore we can reject climate model simulations that fall outside this range.

Given that this Rowlands et al 2012 is attempting to better sample climate uncertainty by a larger ensemble it’s clear that this answer is not known in advance.

There are a lot of uncertainties in climate simulation. Constraining models to match the past may be under-sampling the actual range of climate variability.

Models are not reality. But if we accept that climate simulation is, at best, a probabilistic endeavor, then we must sample what the models produce, rather than throwing out results that don’t match the last 100 years of recorded temperature history.

Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

References

Broad range of 2050 warming from an observationally constrained large climate model ensemble, Daniel Rowlands et al, Nature (2012) – free paper

Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Stainforth et al, Nature (2005) – free paper

Why are climate models reproducing the observed global surface warming so well? Reto Knutti, GRL (2008) – free paper

Twentieth century climate model response and climate sensitivity, Jeffrey T Kiehl, GRL (2007) – free paper

Notes

Note 1: We are using the ideas that have been learnt from simple chaotic systems, like the Lorenz 1963 model. There is discussion of this in Part One and Part Two of this series. As some commenters have pointed out that doesn’t mean the climate works in the same way as these simple systems, it is much more complex.

The starting point is that weather is unpredictable. With modern numerical weather prediction (NWP) on current supercomputers we can get good forecasts 1 week ahead. But beyond that we might as well use the average value for that month in that location, measured over the last decade. It’s going to be better than a forecast from NWP.

The idea behind climate prediction is that even though picking the weather 8 weeks from now is a no-hoper, what we have learnt from simple chaotic systems is that the statistics of many chaotic systems can be reliably predicted.

Note 2: Models are run with different initial conditions as well. My only way of understanding this from a theoretical point of view (i.e., from anything other than a “practical” or “this is how we have always done it” approach) is to see different initial conditions as comparable to one model run over a much longer period.

That is, if climate is not an “initial value problem”, why are initial values changed in each ensemble member to assist climate model output? Running 10 simulations of the same model for 100 years, each with different initial conditions, should be equivalent to running one simulation for 1,000 years.

Well, that is not necessarily true because that 1,000 years might not sample the complete “attractor space”, which is the same point discussed in the last article.

Note 3: Models are usually compared to observations via temperature anomalies rather than via actual temperatures, see Models, On – and Off – the Catwalk – Part Four – Tuning & the Magic Behind the Scenes. The example was given for simplicity.

Read Full Post »