Archive for the ‘Debunking Flawed “Science”’ Category

Long before the printing of money, golden eggs were the only currency.

In a deep cave, goose Day-Lewis, the last of the gold-laying geese, was still at work.

Day-Lewis lived in the country known affectionately as Utopia. Every day, Day-Lewis laid 10 perfect golden eggs, and was loved and revered for her service. Luckily, everyone had read Aesop’s fables, and no one tried to kill Day-Lewis to get all those extra eggs out. Still Utopia did pay a few armed guards to keep watch for the illiterates, just in case.

Utopia wasn’t into storing wealth because it wanted to run some important social programs to improve the education and health of the country. Thankfully they didn’t run a deficit and issue bonds so we don’t need to get into any political arguments about libertarianism.

This article is about golden eggs.

Utopia employed the service of bunny Fred to take the golden eggs to the nearby country of Capitalism in return for services of education and health. Every day, bunny Fred took 10 eggs out of the country. Every day, goose Day-Lewis produced 10 eggs. It was a perfect balance. The law of conservation of golden eggs was intact.

Thankfully, history does not record any comment on the value of the services received for these eggs, or on the benefit to society of those services, so we can focus on the eggs story.

Due to external circumstances outside of Utopia’s control, on January 1st, the year of Our Goose 150, a new international boundary was created between Utopia and Capitalism. History does not record the complex machinations behind the reasons for this new border control.

However, as always with government organizations, things never go according to plan. On the first day, January 1st, there were paperwork issues.

Bunny Fred showed up with 10 golden eggs, and, what he thought was the correct paperwork. Nothing got through. Luckily, unlike some government organizations with wafer-thin protections for citizens’ rights, they didn’t practice asset forfeiture for “possible criminal activity we might dream up and until you can prove you earned this honestly we are going to take it and never give it back”. Instead they told Fred to come back tomorrow.

On January 2nd, Bunny Fred had another run at the problem and brought another 10 eggs. The export paperwork for the supply of education and health only allowed for 10 golden eggs to be exported to Capitalism so border control sent on the 10 eggs from Jan 1st and insisted Bunny Fred take 10 eggs take back to Utopia.

On January 3rd, Bunny Fred, desperate to remedy the deficit of services in Utopia took 20 eggs – 10 from Day-Lewis and 10 he had brought back from border control the day before.

Insistent on following their new ad hoc processes, border control could only send on 10 eggs to Capitalism. As they had no approved paperwork for “storing” extra eggs, they insisted that Fred take back the excess eggs.

Every day, the same result:

  • Day-Lewis produced 10 eggs, Bunny Fred took 20 eggs to border control
  • Border control sent 10 eggs to Capitalism, Bunny Fred brought 10 eggs back

One day some people who thought they understood the law of conservation of golden eggs took a look at the current situation and declared:

Heretics! This is impossible. Day-Lewis, last of the gold-laying geese, only produces 10 eggs per day. How can Bunny Fred be taking 20 eggs to border control?

You can’t create golden eggs! The law of conservation of golden eggs has been violated.

You can’t get more than 100% efficiency. This is impossible.

And in other completely unrelated stories:

A Challenge for Bryan & 

Do Trenberth and Kiehl understand the First Law of Thermodynamics? & Part Two & Part Three – The Creation of Energy?

and recent comments in CO2- An Insignificant Trace Gas? – Part One

Amazing Things we Find in Textbooks – The Real Second Law of Thermodynamics

The Three Body Problem

Read Full Post »

The atmosphere cools to space by radiation. Well, without getting into all the details, the surface cools to space as well by radiation but not much radiation is emitted by the surface that escapes directly to space (note 1). Most surface radiation is absorbed by the atmosphere. And of course the surface mostly cools by convection into the troposphere (lower atmosphere).

If there were no radiatively-active gases (aka “GHG”s) in the atmosphere then the atmosphere couldn’t cool to space at all.

Technically, the emissivity of the atmosphere would be zero. Emission is determined by the local temperature of the atmosphere and its emissivity. Wavelength by wavelength emissivity is equal to absorptivity, another technical term, which says what proportion of radiation is absorbed by the atmosphere. If the atmosphere can’t emit, it can’t absorb (note 2).

So as you increase the GHGs in the atmosphere you increase its ability to cool to space. A lot of people realize this at some point during their climate science journey and finally realize how they have been duped by climate science all along! It’s irrefutable – more GHGs more cooling to space, more GHGs mean less global warming!

Ok, it’s true. Now the game’s up, I’ll pack up Science of Doom into a crate and start writing about something else. Maybe cognitive dissonance..

Bye everyone!
















Halfway through boxing everything up I realized there was a little complication to the simplicity of that paragraph. The atmosphere with more GHGs has a higher emissivity, but also a higher absorptivity.

Let’s draw a little diagram. Here are two “layers” (see note 3) of the atmosphere in two different cases. On the left 400 ppmv CO2, on the right 500ppmv CO2 (and relative humidity of water vapor was set at 50%, surface temperature at 288K):


Figure 1

It’s clear that the two layers are both emitting more radiation with more CO2.More cooling to space.

For interest, the “total emissivity” of the top layer is 0.190 in the first case and 0.197 in the second case. The layer below has 0.389 and 0.395.

Let’s take a look at all of the numbers and see what is going on. This diagram is a little busier:


Figure 2

The key point is that the OLR (outgoing longwave radiation) is lower in the case with more CO2. Yet each layer is emitting more radiation. How can this be?

Take a look at the radiation entering the top layer on the left = 265.1, and add to that the emitted radiation = 23.0 – the total is 288.1. Now subtract the radiation leaving through the top boundary = 257.0 and we get the radiation absorbed in the layer. This is 31.1 W/m².

Compare that with the same calculation with more CO2 – the absorption is 32.2 W/m².

This is the case all the way up through the atmosphere – each layer emits more because its emissivity has increased, but it also absorbs more because its absorptivity has increased by the same amount.

So more cooling to space, but unfortunately more absorption of the radiation below – two competing terms.

So why don’t they cancel out?

Emission of radiation is a result of local temperature and emissivity.

Absorption of radiation is the result of the incident radiation and absorptivity. Incident upwards radiation started lower in the atmosphere where it is hotter. So absorption changes always outweigh emission changes (note 4).

Conceptual Problems?

If it’s still not making sense then think about what happens as you reduce the GHGs in the atmosphere. The atmosphere emits less but absorbs even less of the radiation from below. So the outgoing longwave radiation increases. More surface radiation is making it to the top of atmosphere without being absorbed. So there is less cooling to space from the atmosphere, but more cooling to space from the surface and the atmosphere.

If you add lagging to a pipe, the temperature of the pipe increases (assuming of course it is “internally” heated with hot water). And yet, the pipe cools to the surrounding room via the lagging! Does that mean more lagging, more cooling? No, it’s just the transfer mechanism for getting the heat out.

That was just an analogy. Analogies don’t prove anything. If well chosen, they can be useful in illustrating problems. End of analogy disclaimer.

If you want to understand more about how radiation travels through the atmosphere and how GHG changes affect this journey, take a look at the series Visualizing Atmospheric Radiation.



Note 1: For more on the details see

Note 2: A very basic point – absolutely essential for understanding anything at all about climate science – is that the absorptivity of the atmosphere can be (and is) totally different from its emissivity when you are considering different wavelengths. The atmosphere is quite transparent to solar radiation, but quite opaque to terrestrial radiation – because they are at different wavelengths. 99% of solar radiation is at wavelengths less than 4 μm, and 99% of terrestrial radiation is at wavelengths greater than 4 μm. That’s because the sun’s surface is around 6000K while the earth’s surface is around 290K. So the atmosphere has low absorptivity of solar radiation (<4 μm) but high emissivity of terrestrial radiation.

Note 3: Any numerical calculation has to create some kind of grid. This is a very course grid, with 10 layers of roughly equal pressure in the atmosphere from the surface to 200mbar. The grid assumes there is just one temperature for each layer. Of course the temperature is decreasing as you go up. We could divide the atmosphere into 30 layers instead. We would get more accurate results. We would find the same effect.

Note 4: The equations for radiative transfer are found in Atmospheric Radiation and the “Greenhouse” Effect – Part Six – The Equations. The equations prove this effect.

Read Full Post »

In A Challenge for Bryan I put up a simple heat transfer problem and asked for the equations. Bryan elected not to provide these equations. So I provide the answer, but also attempt some enlightenment for people who don’t think the answer can be correct.

As DeWitt Payne noted, a post with a similar problem posted on Wattsupwiththat managed to gather some (unintentionally) hilarious comments.

Here’s the problem again:

Case 1

Spherical body, A, of radius ra, with an emissivity, εa =1. The sphere is in the vacuum of space.

It is internally heated by a mystery power source (let’s say nuclear, but it doesn’t matter), with power input = P.

The sphere radiates into deep space, let’s say the temperature of deep space = 0K to make the maths simpler.

1. What is the equation for the equilibrium surface temperature of the sphere, Ta?

Case 2

The condition of case A, but now body A is surrounded by a slightly larger spherical shell, B, which of course is itself now surrounded by deep space at 0K.

B has a radius rb, with an emissivity, εb =1. This shell is highly conductive and very thin.

2a. What is the equation for the new equilibrium surface temperature, Ta’?

2b. What is the equation for the equilibrium temperature, Tb, of shell B?



The reason for the “slightly larger shell” is to avoid “complex” view factor issues. Of course, I’m happy to relax the requirement for “slightly larger” and let Bryan provide the more general answer.

The reason for the “highly conductive” and “thin” outer shell, B, is to avoid any temperature difference between the inside and the outside surfaces of the shell. That is, we can assume the outside surface is at the same temperature as the inside surface – both at temperature, Tb.

This kind of problem is a staple of introductory heat transfer. This is a “find the equilibrium” problem.

How do we solve these kinds of problems? It’s pretty easy once you understand the tools.

The first tool is the first law of thermodynamics. Steady state means temperatures have stabilized and so energy in = energy out. We draw a “boundary” around each body and apply the “boundary condition” of the first law.

The second tool is the set of equations that govern the movement of energy. These are the equations for conduction, convection and radiation. In this case we just have radiation to consider.

For people who see the solution, shake their heads and say, this can’t be, stay on to the end and I will try and shed some light on possible conceptual problems. Of course, if it’s wrong, you should easily be able to provide the correct equations – or even if you can’t write equations you should be able to explain the flaw in the formulation of the equation.

In the original article I put some numbers down – “For anyone who wants to visualize some numbers: ra=1m, P=1000W, rb=1.01m“. I will use these to calculate an answer from the equations. I realize many readers aren’t comfortable with equations and so the answers will help illuminate the meaning of the equations.

I go through the equations in tedious detail, again for people who would like to follow the maths but don’t find maths easy.

Case 1

Energy in, Ein = Energy out, Eout  :  in Watts (Joules per second).

Ein = P

Eout = emission of thermal radiation per unit area x area

The first part is given by the Stefan-Boltzmann equation (σTa4, where σ = 5.67×10-8), and the second part by the equation for the surface area of a sphere (4πra²)

Eout = 4πra² x σTa4 …..[eqn 1]

Therefore, P = 4πra²σTa4 ….[eqn 2]

We have to rearrange the equation to see how Ta changes with the other factors:

Ta = [P / (4πra²σ)]1/4 ….[eqn 3]

If you aren’t comfortable with maths this might seem a little daunting. Let’s put the numbers in:

Ta = 194K (-80ºC)

Now we haven’t said anything about how long it takes to reach this temperature. We don’t have enough information for that. That’s the nice thing about steady state calculations, they are easier than dynamic calculations. We will look at that at the end.

Probably everyone is happy with this equation. Energy is conserved. No surprises and nothing controversial.

Now we will apply the exact same approach to the second case.

Case 2

First we consider “body A”. Given that it is enclosed by another “body” – the shell B – we have to consider any energy being transferred by radiation from B to A. If it turns out to be zero, of course it won’t affect the temperature of body A.

Ein(a) = P + Eb-a ….[eqn 4], where Eb-a is a value we don’t yet know. It is the radiation from B absorbed by A.

Eout(a) = 4πra² x σTa4 ….[eqn 5]- this is the same as in case 1. Emission of radiation from a body only depends on its temperature (and emissivity and area but these aren’t changing between the two cases)

– we will look at shell B and come back to the last term in eqn 4.

Now the shell outer surface:

Radiates out to space

We set space at absolute zero so no radiation is received by the outer surface

Shell inner surface:

Radiates in to A (in fact almost all of the radiation emitted from the inner surface is absorbed by A and for now we will treat it as all) – this was the term Eb-a

Absorbs all of the radiation emitted by A, this is Eout(a)

And we made the shell thin and highly conductive so there is no temperature difference between the two surfaces. Let’s collect the heat transfer terms for shell B under steady state:

Ein(b) = Eout(a) + 0  …..[eqn 6] – energy in is all from the sphere A, and nothing from outside

             =  4πra² x σTa4 ….[eqn 6a] – we just took the value from eqn 5

Eout(b) = 4πrb² x σTb4 + 4πrb² x σTb4 …..[eqn 7] – energy out is the emitted radiation from the inner surface + emitted radiation from the outer surface

                = 2 x 4πrb² x σTb4 ….[eqn 7a]

 And we know that for shell B, Ein = Eout so we equate 6a and 7a:

4πra² x σTa4 = 2 x 4πrb² x σTb4 ….[eqn 8]

and now we can cancel a lot of the common terms:

ra² x Ta4 = 2 x rb² x Tb4 ….[eqn 8a]

and re-arrange to get Ta in terms of Tb:

Ta4 = 2rb²/ra² x Tb4 ….[eqn 8b]

Ta = [2rb²/ra²]1/4 x Tb ….[eqn 8b]

or we can write it the other way round:

Tb = [ra²/2rb²]1/4 x Ta ….[eqn 8c]

Using the numbers given, Ta = 1.2 Tb. So the sphere is 20% warmer than the shell (actually 2 to the power 1/4).

We need to use Ein=Eout for the sphere A to be able to get the full solution. We wrote down: Ein(a) = P + Eb-a ….[eqn 4]. Now we know “Eb-a” – this is one of the terms in eqn 7.


Ein(a) = P + 4πrb² x σTb4 ….[eqn 9]

and Ein(a) = Eout(a), so:

P + 4πrb² x σTb4 = 4πra² x σTa4  ….[eqn 9]

we can substitute the equation for Tb:

P + 4πra² /2 x σTa4 = 4πra² x σTa4  ….[eqn 9a]

the 2nd term on the left and the right hand side can be combined:

P = 2πra² x σTa4  ….[eqn 9a]

And so, voila:

T’a = [P / (2πra²σ)]1/4 ….[eqn 10] – I added a dash to Ta so we can compare it with the original value before the shell arrived.

T’a = 21/4 Ta   ….[eqn 11] – that is, the temperature of the sphere A is about 20% warmer in case 2 compared with case 1.

Using the numbers, T’a = 230 K (-43ºC). And Tb = 193 K (-81ºC)

Explaining the Results

In case 2, the inner sphere, A, has its temperature increase by 36K even though the same energy production takes place inside. Obviously, this can’t be right because we have created energy??.. let’s come back to that shortly.

Notice something very important – Tb in case 2 is almost identical to Ta in case 1. The difference is actually only due to the slight difference in surface area. Why?

The system has an energy production, P, in both cases.

  • In case 1, the sphere A is the boundary transferring energy to space and so its equilibrium temperature must be determined by P
  • In case 2, the shell B is the boundary transferring energy to space and so its equilibrium temperature must be determined by P

Now let’s confirm the mystery unphysical totally fake invented energy.

Let’s compare the flux emitted from A in case 1 and case 2. I’ll call it R.

  • R(case 1) = 80 W/m²
  • R(case 2) = 159 W/m²

This is obviously rubbish. The same energy source inside the sphere and we doubled the sphere’s energy production!!! Get this idiot to take down this post, he has no idea what he is writing..

Yet if we check the energy balance we find that 80 W/m² is being “created” by our power source, and the “extra mystery” energy of 79 W/m² is coming from our outer shell. In any given second no energy is created.

The Mystery Invented Energy – Revealed

When we snapped the outer shell over the sphere we made it harder for heat to get out of the system. Energy in = energy out, in steady state. When we are not in steady state: energy in – energy out = energy retained. Energy retained is internal energy which is manifested as temperature.

We made it hard for heat to get out, which accumulated energy, which increased temperature.. until finally the inner sphere A was hot enough for all of the internally generated energy, P, to get out of the system.

Let’s add some information about the system: the heat capacity of the sphere = 1000 J/K; the heat capacity of the shell = 100 J/K. It doesn’t much matter what they are, it’s just to calculate the transients. We snap the shell – originally at 0K – around the sphere at time t=100 seconds and see what happens.

The top graph shows temperature, the bottom graph shows change in energy of the two objects and how much energy is leaving the system:


At 100 seconds we see that instead of our steady state 1000W leaving the system, instead 0W leaves the system. This is the important part of the mystery energy puzzle.

We put a 0K shell around the sphere. This absorbs all the energy from the sphere. At time t=100s the shell is still at 0K so it emits 0W/m². It heats up pretty quickly, but remember that emission of radiation is not linear with temperature so you don’t see a linear relationship between the temperature of shell B and the energy leaving to space. For example at 100K, the outward emission is 6 W/m², at 150K it is 29 W/m² and at its final temperature of 193K, it is 79 W/m² (=1000 W in total).

As the shell heats up it emits more and more radiation inwards, heating up the sphere A.

The mystery energy has been revealed. The addition of a radiation barrier stopped energy leaving, which stored heat. The way equilibrium is finally restored is due to the temperature increase of the sphere.

Of course, for some strange reason an army of people thinks this is totally false. Well, produce your equations.. (this never happens)

All we have done here is used conservation of energy and the Stefan Boltzmann law of emission of thermal radiation.

Read Full Post »

Bryan needs no introduction on this blog, but if we were to introduce him it would be as the fearless champion of Gerlich and Tscheuschner.

Bryan has been trying to teach me some basics on heat transfer from the Ladybird Book of Thermodynamics. In hilarious fashion we both already agree on that particular point.

So now here is a problem for Bryan to solve.

Of course, in Game of Thrones fashion, Bryan can nominate his own champion to solve the problem.

Case A

Spherical body, A, of radius ra, with an emissivity, εa =1. The sphere is in the vacuum of space.

It is internally heated by a mystery power source (let’s say nuclear, but it doesn’t matter), with power input = P.

The sphere radiates into deep space, let’s say the temperature of deep space = 0K to make the maths simpler.

1. What is the equation for the equilibrium surface temperature of the sphere, Ta?

Case B

The condition of case A, but now body A is surrounded by a slightly larger spherical shell, B, which of course is itself now surrounded by deep space at 0K.

B has a radius rb, with an emissivity, εb =1. This shell is highly conductive and very thin.

2a. What is the equation for the new equilibrium surface temperature, Ta’?

2b. What is the equation for the equilibrium temperature, Tb, of shell B?



The reason for the “slightly larger shell” is to avoid “complex” view factor issues. Of course, I’m happy to relax the requirement for “slightly larger” and let Bryan provide the more general answer.

The reason for the “highly conductive” and “thin” outer shell, B, is to avoid any temperature difference between the inside and the outside surfaces of the shell. That is, we can assume the outside surface is at the same temperature as the inside surface – both at temperature, Tb.

For anyone who wants to visualize some numbers: ra=1m, P=1000W, rb=1.01m

This problem takes a couple of minutes to solve on a piece of paper. I suspect we will wait a decade for Bryan’s answer. But I love to be proved wrong!

Read Full Post »

In The “Greenhouse” Effect Explained in Simple Terms I list, and briefly explain, the main items that create the “greenhouse” effect. I also explain why more CO2 (and other GHGs) will, all other things remaining equal, increase the surface temperature. I recommend that article as the place to go for the straightforward explanation of the “greenhouse” effect. It also highlights that the radiative balance higher up in the troposphere is the most important component of the “greenhouse” effect.

However, someone recently commented on my first Kramm & Dlugi article and said I was “plainly wrong”. Kramm & Dlugi were in complete agreement with Gerlich and Tscheuschner because they both claim the “purported greenhouse effect simply doesn’t exist in the real world”.

If it’s just about flying a flag or wearing a football jersey then I couldn’t agree more. However, science does rely on tedious detail and “facts” rather than football jerseys. As I pointed out in New Theory Proves AGW Wrong! two contradictory theories don’t add up to two theories making the same case..

In the case of the first Kramm & Dlugi article I highlighted one point only. It wasn’t their main point. It wasn’t their minor point. They weren’t even making a point of it at all.

Many people believe the “greenhouse” effect violates the second law of thermodynamics, these are herein called “the illuminati”.

Kramm & Dlugi’s equation demonstrates that the illuminati are wrong. I thought this was worth pointing out.

The “illuminati” don’t understand entropy, can’t provide an equation for entropy, or even demonstrate the flaw in the simplest example of why the greenhouse effect is not in violation of the second law of thermodynamics. Therefore, it is necessary to highlight the (published) disagreement between celebrated champions of the illuminati – even if their demonstration of the disagreement was unintentional.

Let’s take a look.

Here is the one of the most popular G&T graphics in the blogosphere:

From Gerlich & Tscheuschner

From Gerlich & Tscheuschner

Figure 1

It’s difficult to know how to criticize an imaginary diagram. We could, for example, point out that it is imaginary. But that would be picky.

We could say that no one draws this diagram in atmospheric physics. That should be sufficient. But as so many of the illuminati have learnt their application of the second law of thermodynamics to the atmosphere from this fictitious diagram I feel the need to press forward a little.

Here is an extract from a widely-used undergraduate textbook on heat transfer, with a little annotation (red & blue):

From Incropera & DeWitt (2007)

From “Fundamentals of Heat and Mass Transfer” by Incropera & DeWitt (2007)

Figure 2

This is the actual textbook, before the Gerlich manoeuvre as I would like to describe it. We can see in the diagram and in the text that radiation travels both ways and there is a net transfer which is from the hotter to the colder. The term “net” is not really capable of being confused. It means one minus the other, “x-y”. Not “x”. (For extracts from six heat transfer textbooks and their equations read Amazing Things we Find in Textbooks – The Real Second Law of Thermodynamics).

Now let’s apply the Gerlich manoeuvre (compare fig. 2):


Not from “Fundamentals of Heat and Mass Transfer”, or from any textbook ever

Figure 3

So hopefully that’s clear. Proof by parody. This is “now” a perpetual motion machine and so heat transfer textbooks are wrong. All of them. Somehow.

Just for comparison, we can review the globally annually averaged values of energy transfer in the atmosphere, including radiation, from Kiehl & Trenberth (I use the 1997 version because it is so familiar even though values were updated more recently):

From Kiehl & Trenberth (1997)

From Kiehl & Trenberth (1997)

Figure 4

It should be clear that the radiation from the hotter surface is higher than the radiation from the colder atmosphere. If anyone wants this explained, please ask.

I could apply the Gerlich manoeuvre to this diagram but they’ve already done that in their paper (as shown above in figure 1).

So lastly, we return to Kramm & Dlugi, and their “not even tiny point”, which nevertheless makes a useful point. They don’t provide a diagram, they provide an equation for energy balance at the surface – and I highlight each term in the equation to assist the less mathematically inclined:



Figure 5

The equation says, the sum of all fluxes – at one point on the surface = 0. This is an application of the famous first law of thermodynamics, that is, energy cannot be created or destroyed.

The red term – absorbed atmospheric radiation – is the radiation from the colder atmosphere absorbed by the hotter surface. This is also known as “DLR” or “downward longwave radiation, and as “back-radiation”.

Now, let’s assume that the atmospheric radiation increases in intensity over a small period. What happens?

The only way this equation can continue to be true is for one or more of the last 4 terms to increase.

  • The emitted surface radiation – can only increase if the surface temperature increases
  • The latent heat transfer – can only increase if there is an increase in wind speed or in the humidity differential between the surface and the atmosphere just above
  • The sensible heat transfer – can only increase if there is an increase in wind speed or in the temperature differential between the surface and the atmosphere just above
  • The heat transfer into the ground – can only increase if the surface temperature increases or the temperature below ground spontaneously cools

So, when atmospheric radiation increases the surface temperature must increase (or amazingly the humidity differential spontaneously increases to balance, but without a surface temperature change). According to G&T and the illuminati this surface temperature increase is impossible. According to Kramm & Dlugi, this is inevitable.

I would love it for Gerlich or Tscheuschner to show up and confirm (or deny?):

  • yes the atmosphere does emit thermal radiation
  • yes the surface of the earth does absorb atmospheric thermal radiation
  • yes this energy does not disappear (1st law of thermodynamics)
  • yes this energy must increase the temperature of the earth’s surface above what it would be if this radiation did not exist (1st law of thermodynamics)

Or even, which one of the above is wrong. That would be outstanding.

Of course, I know they won’t do that – even though I’m certain they believe all of the above points. (Likewise, Kramm & Dlugi won’t answer the question I have posed of them).

Well, we all know why

Hopefully, the illuminati can contact Kramm & Dlugi and explain to them where they went wrong. I have my doubts that any of the illuminati have grasped the first law of thermodynamics or the equation for temperature change and heat capacity, but who could say.

Read Full Post »

Over the last few years I’ve written lots of articles relating to the inappropriately-named “greenhouse” effect and covered some topics in great depth. I’ve also seen lots of comments and questions which has helped me understand common confusion and misunderstandings.

This article, with huge apologies to regular long-suffering readers, covers familiar ground in simple terms. It’s a reference article. I’ve referenced other articles and series as places to go to understand a particular topic in more detail.

One of the challenges of writing a short simple explanation is it opens you up to the criticism of having omitted important technical details that you left out in order to keep it short. Remember this is the simple version..


First of all, the “greenhouse” effect is not AGW. In maths, physics, engineering and other hard sciences, one block is built upon another block. AGW is built upon the “greenhouse” effect. If AGW is wrong, it doesn’t invalidate the greenhouse effect. If the greenhouse effect is wrong, it does invalidate AGW.

The greenhouse effect is built on very basic physics, proven for 100 years or so, that is not in any dispute in scientific circles. Fantasy climate blogs of course do dispute it.

Second, common experience of linearity in everyday life cause many people to question how a tiny proportion of “radiatively-active” molecules can have such a profound effect. Common experience is not a useful guide. Non-linearity is the norm in real science. Since the enlightenment at least, scientists have measured things rather than just assumed consequences based on everyday experience.

The Elements of the “Greenhouse” Effect

Atmospheric Absorption

1. The “radiatively-active” gases in the atmosphere:

  • water vapor
  • CO2
  • CH4
  • N2O
  • O3
  • and others

absorb radiation from the surface and transfer this energy via collision to the local atmosphere. Oxygen and nitrogen absorb such a tiny amount of terrestrial radiation that even though they constitute an overwhelming proportion of the atmosphere their radiative influence is insignificant (note 1).

How do we know all this? It’s basic spectroscopy, as detailed in exciting journals like the Journal of Quantitative Spectroscopy and Radiative Transfer over many decades. Shine radiation of a specific wavelength through a gas and measure the absorption. Simple stuff and irrefutable.

Atmospheric Emission

2. The “radiatively-active” gases in the atmosphere also emit radiation. Gases that absorb at a wavelength also emit at that wavelength. Gases that don’t absorb at that wavelength don’t emit at that wavelength. This is a consequence of Kirchhoff’s law.

The intensity of emission of radiation from a local portion of the atmosphere is set by the atmospheric emissivity and the temperature.


3. The transfer of heat within the troposphere is mostly by convection. The sun heats the surface of the earth through the (mostly) transparent atmosphere (note 2). The temperature profile, known as the “lapse rate”, is around 6K/km in the tropics. The lapse rate is principally determined by non-radiative factors – as a parcel of air ascends it expands into the lower pressure and cools during that expansion (note 3).

The important point is that the atmosphere is cooler the higher you go (within the troposphere).

Energy Balance

4. The overall energy in the climate system is determined by the absorbed solar radiation and the emitted radiation from the climate system. The absorbed solar radiation – globally annually averaged – is approximately 240 W/m² (note 4). Unsurprisingly, the emitted radiation from the climate system is also (globally annually averaged) approximately 240 W/m². Any change in this and the climate is cooling or warming.

Emission to Space

5. Most of the emission of radiation to space by the climate system is from the atmosphere, not from the surface of the earth. This is a key element of the “greenhouse” effect. The intensity of emission depends on the local atmosphere. So the temperature of the atmosphere from which the emission originates determines the amount of radiation.

If the place of emission of radiation – on average – moves upward for some reason then the intensity decreases. Why? Because it is cooler the higher up you go in the troposphere. Likewise, if the place of emission – on average – moves downward for some reason, then the intensity increases (note 5).

More GHGs

6. If we add more radiatively-active gases (like water vapor and CO2) then the atmosphere becomes more “opaque” to terrestrial radiation and the consequence is the emission to space from the atmosphere moves higher up (on average). Higher up is colder. See note 6.

So this reduces the intensity of emission of radiation, which reduces the outgoing radiation, which therefore adds energy into the climate system. And so the climate system warms (see note 7).

That’s it!

It’s as simple as that. The end.

A Few Common Questions

CO2 is Already Saturated

There are almost 315,000 individual absorption lines for CO2 recorded in the HITRAN database. Some absorption lines are stronger than others. At the strongest point of absorption – 14.98 μm (667.5 cm-1), 95% of radiation is absorbed in only 1m of the atmosphere (at standard temperature and pressure at the surface). That’s pretty impressive.

By contrast, from 570 – 600 cm-1 (16.7 – 17.5 μm) and 730 – 770 cm-1 (13.0 – 13.7 μm) the CO2 absorption through the atmosphere is nowhere near “saturated”. It’s more like 30% absorbed through a 1km path.

You can see the complexity of these results in many graphs in Atmospheric Radiation and the “Greenhouse” Effect – Part Nine – calculations of CO2 transmittance vs wavelength in the atmosphere using the 300,000 absorption lines from the HITRAN database, and see also Part Eight – interesting actual absorption values of CO2 in the atmosphere from Grant Petty’s book

The complete result combining absorption and emission is calculated in Visualizing Atmospheric Radiation – Part Seven – CO2 increases – changes to TOA in flux and spectrum as CO2 concentration is increased

CO2 Can’t Absorb Anything of Note Because it is Only .04% of the Atmosphere

See the point above. Many spectroscopy professionals have measured the absorptivity of CO2. It has a huge variability in absorption, but the most impressive is that 95% of 14.98 μm radiation is absorbed in just 1m. How can that happen? Are spectroscopy professionals charlatans? You need evidence, not incredulity. Science involves measuring things and this has definitely been done. See the HITRAN database.

Water Vapor Overwhelms CO2

This is an interesting point, although not correct when we consider energy balance for the climate. See Visualizing Atmospheric Radiation – Part Four – Water Vapor – results of surface (downward) radiation and upward radiation at TOA as water vapor is changed.

The key point behind all the detail is that the top of atmosphere radiation change (as CO2 changes) is the important one. The surface change (forcing) from increasing CO2 is not important, is definitely much weaker and is often insignificant. Surface radiation changes from CO2 will, in many cases, be overwhelmed by water vapor.

Water vapor does not overwhelm CO2 high up in the atmosphere because there is very little water vapor there – and the radiative effect of water vapor is dramatically impacted by its concentration, due to the “water vapor continuum”.

The Calculation of the “Greenhouse” Effect is based on “Average Surface Temperature” and there is No Such Thing

Simplified calculations of the “greenhouse” effect use some averages to make some points. They help to create a conceptual model.

Real calculations, using the equations of radiative transfer, don’t use an “average” surface temperature and don’t rely on a 33K “greenhouse” effect. Would the temperature decrease 33K if all of the GHGs were removed from the atmosphere? Almost certainly not. Because of feedbacks. We don’t know the effect of all of the feedbacks. But would the climate be colder? Definitely.

See The Rotational Effect – why the rotation of the earth has absolutely no effect on climate, or so a parody article explains..

The Second Law of Thermodynamics Prohibits the Greenhouse Effect, or so some Physicists Demonstrated..

See The Three Body Problem – a simple example with three bodies to demonstrate how a “with atmosphere” earth vs a “without atmosphere earth” will generate different equilibrium temperatures. Please review the entropy calculations and explain (you will be the first) where they are wrong or perhaps, or perhaps explain why entropy doesn’t matter (and revolutionize the field).

See Gerlich & Tscheuschner for the switch and bait routine by this operatic duo.

And see Kramm & Dlugi On Dodging the “Greenhouse” Bullet – Kramm & Dlugi demonstrate that the “greenhouse” effect doesn’t exist by writing a few words in a conclusion but carefully dodging the actual main point throughout their entire paper. However, they do recover Kepler’s laws and point out a few errors in a few websites. And note that one of the authors kindly showed up to comment on this article but never answered the important question asked of him. Probably just too busy.. Kramm & Dlugi also helpfully (unintentionally) explain that G&T were wrong, see Kramm & Dlugi On Illuminating the Confusion of the Unclear – Kramm & Dlugi step up as skeptics of the “greenhouse” effect, fans of Gerlich & Tscheuschner and yet clarify that colder atmospheric radiation is absorbed by the warmer earth..

And for more on that exciting subject, see Confusion over the Basics under the sub-heading The Second Law of Thermodynamics.

Feedbacks overwhelm the Greenhouse Effect

This is a totally different question. The “greenhouse” effect is the “greenhouse” effect. If the effect of more CO2 is totally countered by some feedback then that will be wonderful. But that is actually nothing to do with the “greenhouse” effect. It would be a consequence of increasing temperature.

As noted in the preamble, it is important to separate out the different building blocks in understanding climate.

Miskolczi proved that the Greenhouse Effect has no Effect

Miskolczi claimed that the greenhouse effect was true. He also claimed that more CO2 was balanced out by a corresponding decrease in water vapor. See the Miskolczi series for a tedious refutation of his paper that was based on imaginary laws of thermodynamics and questionable experimental evidence.

Once again, it is important to be able to separate out two ideas. Is the greenhouse effect false? Or is the greenhouse effect true but wiped out by a feedback?

If you don’t care, so long as you get the right result you will be in ‘good’ company (well, you will join an extremely large company of people). But this blog is about science. Not wishful thinking. Don’t mix the two up..

Convection “Short-Circuits” the Greenhouse Effect

Let’s assume that regardless of the amount of energy arriving at the earth’s surface, that the lapse rate stays constant and so the more heat arriving, the more heat leaves. That is, the temperature profile stays constant. (It’s a questionable assumption that also impacts the AGW question).

It doesn’t change the fact that with more GHGs, the radiation to space will be from a higher altitude. A higher altitude will be colder. Less radiation to space and so the climate warms – even with this “short-circuit”.

In a climate without convection, the surface temperature will start off higher, and the GHG effect from doubling CO2 will be higher. See Radiative Atmospheres with no Convection.

In summary, this isn’t an argument against the greenhouse effect, this is possibly an argument about feedbacks. The issue about feedbacks is a critical question in AGW, not a critical question for the “greenhouse” effect. Who can say whether the lapse rate will be constant in a warmer world?


Note 1 – An important exception is O2 absorbing solar radiation high up above the troposphere (lower atmosphere). But O2 does not absorb significant amounts of terrestrial radiation.

Note 2 – 99% of solar radiation has a wavelength <4μm. In these wavelengths, actually about 1/3 of solar radiation is absorbed in the atmosphere. By contrast, most of the terrestrial radiation, with a wavelength >4μm, is absorbed in the atmosphere.

Note 3 – see:

Density, Stability and Motion in Fluids – some basics about instability
Potential Temperature – explaining “potential temperature” and why the “potential temperature” increases with altitude
Temperature Profile in the Atmosphere – The Lapse Rate – lots more about the temperature profile in the atmosphere

Note 4 – see Earth’s Energy Budget – a series on the basics of the energy budget

Note 5 – the “place of emission” is a useful conceptual tool but in reality the emission of radiation takes place from everywhere between the surface and the stratosphere. See Visualizing Atmospheric Radiation – Part Three – Average Height of Emission – the complex subject of where the TOA radiation originated from, what is the “Average Height of Emission” and other questions.

Also, take a look at the complete series: Visualizing Atmospheric Radiation.

Note 6 – the balance between emission and absorption are found in the equations of radiative transfer. These are derived from fundamental physics – see Atmospheric Radiation and the “Greenhouse” Effect – Part Six – The Equations – the equations of radiative transfer including the plane parallel assumption and it’s nothing to do with blackbodies. The fundamental physics is not just proven in the lab, spectral measurements at top of atmosphere and the surface match the calculated values using the radiative transfer equations – see Theory and Experiment – Atmospheric Radiation – real values of total flux and spectra compared with the theory.

Also, take a look at the complete series: Atmospheric Radiation and the “Greenhouse” Effect

Note 7 – this calculation is under the assumption of “all other things being equal”. Of course, in the real climate system, all other things are not equal. However, to understand an effect “pre-feedback” we need to separate it from the responses to the system.

Read Full Post »

As a friend of mine in Florida says:

You can’t kill stupid, but you can dull it with a 4×2

Some ideas are so comically stupid that I thought there was no point writing about them. And yet, one after another, people who can type are putting forward these ideas on this blog.. At first I wondered if I was the object of a practical joke. Some kind of parody. Perhaps the joke is on me. But, just in case I was wrong about the practical joke..


If you pick up a textbook on heat transfer that includes a treatment of radiative heat transfer you find no mention of Arrhenius.

If you pick up a textbook on atmospheric physics none of the equations come from Arrhenius.

Yet there is a steady stream of entertaining “papers” which describe “where Arrhenius went wrong”, “Arrhenius and his debates with Fourier”. Who cares?

Likewise, if you study equations of motion in a rotating frame there is no discussion of where Newton went wrong, or where he got it right, or debates he got right or wrong with contemporaries. Who knows? Who cares?

History is fascinating. But if you want to study physics you can study it pretty well without reading about obscure debates between people who were in the formulation stages of the field.

Here are the building blocks of atmospheric radiation:

  • The emission of radiation – described by Nobel prize winner Max Planck’s equation and modified by the material property called emissivity (this is wavelength dependent)
  • The absorption of radiation by a surface – described by the material property called absorptivity (this is wavelength dependent and equal at the same wavelength and direction to emissivity)
  • The Beer-Lambert law of absorption of radiation by a gas
  • The spectral absorption characteristics of gases – currently contained in the HITRAN database – and based on work carried out over many decades and written up in journals like Journal of Quantitative Spectroscopy and Radiative Transfer
  • The theory of radiative transfer – the Schwarzschild equation – which was well documented by Nobel prize winner Subrahmanyan Chandrasekhar in his 1952 book Radiative Transfer (and by many physicists since)

The steady stream of stupidity will undoubtedly continue, but if you are interested in learning about science then you can rule out blogs that promote papers which earnestly explain “where Arrhenius went wrong”.

Hit them with a 4 by 2.

Or, ask the writer where Subrahmanyan Chandrasekhar went wrong in his 1952 work Radiative Transfer. Ask the writer where Richard M. Goody went wrong. He wrote the seminal Atmospheric Radiation: Theoretical Basis in 1964.

They won’t even know these books exist and will have never read them. These books contain equations that are thoroughly proven over the last 100 years. There is no debate about them in the world of physics. In the world of fantasy blogs, maybe.

There is also a steady stream of people who believe an idea yet more amazing. Somehow basic atmospheric physics is proven wrong because of the last 15 years of temperature history.

The idea seems to be:

More CO2 is believed to have some radiative effect in the climate because of the last 100 years of temperature history, climate scientists saw some link and tried to explain it using CO2, but now there has been no significant temperature increase for the last x years this obviously demonstrates the original idea was false..

If you think this, please go and find a piece of 4×2 and ask a friend to hit you across the forehead with it. Repeat. I can’t account for this level of stupidity but I have seen that it exists.

An alternative idea, that I will put forward, one that has evidence, is that scientists discovered that they can reliably predict:

  • emission of radiation from a surface
  • emission of radiation from a gas
  • absorption of radiation by a surface
  • absorption of radiation by a gas
  • how to add up, subtract, divide and multiply, raise numbers to the power of, and other ninja mathematics

The question I have for the people with these comical ideas:

Do you think that decades of spectroscopy professionals have just failed to measure absorption? Their experiments were some kind of farce? No one noticed they made up all the results?

Do you think Max Planck was wrong?

It is possible that climate is slightly complicated and temperature history relies upon more than one variable?

Did someone teach you that the absorption and emission of radiation was only “developed” by someone analyzing temperature vs CO2 since 1970 and not a single scientist thought to do any other measurements? Why did you believe them?

Bring out the 4×2.

Note – this article is a placeholder so I don’t have to bother typing out a subset of these points for the next entertaining commenter..

Update July 10th with the story of Fred the Charlatan

Let’s take the analogy of a small boat crossing the Atlantic.

Analogies don’t prove anything, they are for illustration. For proof, please review Theory and Experiment – Atmospheric Radiation.

We’ve done a few crossings and it’s taken 45 days, 42 days and 46 days (I have no idea what the right time is, I’m not a nautical person).

We measure the engine output – the torque of the propellors. We want to get across quicker. So Fred the engine guy makes a few adjustments and we remeasure the torque at 5% higher. We also do Fred’s standardized test, which is to zip across a local sheltered bay with no currents, no waves and no wind – the time taken for Fred’s standarized test is 4% faster. Nice.

So we all set out on our journey across the Atlantic. Winds, rain, waves, ocean currents. We have our books to read, Belgian beer and red wine and the time flies. Oh no, when we get to our final destination, it’s actually taken 47 days.

Clearly Fred is some kind of charlatan! No need to check his measurements or review the time across the bay. We didn’t make it across the Atlantic in less time and clearly the ONLY variable involved in that expedition was the output of the propellor.

Well, there’s no point trying to use more powerful engines to get across the Atlantic (or any ocean) faster. Torque has no relationship to speed. Case closed.

Analogy over.


Read Full Post »

Older Posts »


Get every new post delivered to your Inbox.

Join 401 other followers