Feeds:
Posts
Comments

Once we start measuring climate parameters we get a lot of data. To compare datasets, or datasets with models, we can look at means, standard deviations, medians, percentiles, and so on.

I’ve frequently mentioned the problem that climate is nonlinear. If we investigate the underlying physics of most processes we find that the answer to the problem does not scale linearly as inputs change.

Roca et al (2012) say:

The main reason for water vapor to be of importance to the energetics of the climate lies in the nonlinearity of the radiative transfer to the humidity. The outgoing longwave radiation (OLR) is indeed much more sensitive to a given perturbation in a dry rather than moist environment, conferring a central role of the moisture distribution in these regions to the radiation budget of the planet and to the overall climate sensitivity.

The authors demonstrate that with the same mean value of water vapor in a dry climate we can get different values of radiation to space for different distributions. (Note that FTH = free tropospheric humidity. This is the humidity above the atmospheric boundary layer – the boundary layer ranges from between a few hundred meters and one km):

Energy constraints on planet Earth (i.e. applying the first law of thermodynamics) require that, at equilibrium, the Earth emits in the long wave as much radiation as its gets from the Sun. This budget approach is hence focused on the mean values of the OLR over the whole planet and over long time scales corresponding to the global radiative-convective equilibrium theory.

While the mean OLR is the constrained parameter, owing to the nonlinearity of the clear-sky radiative transfer to water vapour (Figs. 2a, 3), the whole distribution of moisture has to be considered rather than its mean in order to link the distribution of humidity to that of radiation.

To illustrate this, the OLR sensitivity to FTH curve (Fig. 2a) and four distributions of FTH for a dry case are considered (Fig. 2bc):  a constant distribution with mean of 14.5%, an uniform distribution with mean of 14.5% bounded within plus or minus 5%, a Gaussian distribution with mean of 14.5% (and a 5% standard deviation) and a generalized log-normal distribution with a mean of 14.5% shown in Fig. 2c. The mean OLR corresponding to the constant distribution is 311 W/m². The uniform and normal distribution yield to a mean OLR larger by 0.7 W/m² in both cases.

The log-normal PDF, on the other hand, gives a 3 W/m² overestimation of the OLR with respect to the constant case. At the scale of the doubling of CO2 problem, such a systematic bias could be significant depending on its geographical spread, which is explored next.

PDF is the probability density function.

And in case it’s not clear what the authors were saying, the same average humidity can result in significantly different OLR depending on the distribution of the humidity from which the average was calculated.

Roca-2012

Figure 1

We saw the importance of the drier subsiding regions of the tropics in Clouds & Water Vapor – Part Five – Back of the envelope calcs from Pierrehumbert in that they have much higher OLR than the convective regions.

This paper calculates the results (using the vertical profile of temperature as a multi-year summer average of Bay of Bengal conditions from ERA-40) that with a constant boundary layer humidity (BLH), increasing FTH from 1% to 15% reduces OLR by 23 W/m². Increasing FTH from 35% to 50% reduces OLR by only 8 W/m². The spectral composition of these changes is interesting:

Roca-2012-brightness-temp-vs-wavelength

Figure 2

The authors comment that the changes in surface temperature (in the 2nd graph) result in a smaller change in OLR, which seems to be indicated from the brightness temperature graph. I have asked Remy Roca if he has the OLR calculations for this second graph to hand.

Then a statistical test is applied to values of humidity at 500 hPa (about 5.5 km altitude):

Roca-2012-fig4

Figure 3

We see that the moist areas are more likely to have a normal (gaussian) distribution, while the dry areas are less likely.

Here is an actual distribution from Ryoo et al (2008), for different regions from 250 hPa (about 11km) for both tropical (red) and sub-tropical regions (blue):

Ryoo-2008

Figure 4

The authors use the frequency of occurrence of relative humidity less than 10% as a measure:

The need of handling the whole PDF of humidity instead of only the mean of the field implies the manipulation of the upper moments of the distribution (skewness and kurtosis). While the computations are straightforward, the comparison of two PDFs through the comparison of their 4 moments is not. Assuming a generalized log-normal distribution also requires 4 parameters to be fitted. It can be brought down to 2 parameters by imposing the lower and upper range limit of the distribution (0 and 100% for instance) at the cost of limiting the possible distributions.

The simplified model (Ryoo et al. 2009) also comprises only two parameters, linked to the first two moments of the distribution. Still, the moments-to-moments comparison of PDFs remains difficult.

Here, it is proposed to limit the analysis to a single parameter characterizing the PDF with emphasis on the dry foot of the distribution: the frequency of occurrence of RH below 10%, noted in the following as RHp10.

The paper then provides some graphs of the frequency of RH below 10%. We can think of it as another way of looking at the same data, but focusing on the drier end of the dataset:

From Roca et al 2012

From Roca et al 2012

Figure 5

From Roca et al 2012

From Roca et al 2012

Figure 6

The authors then consider the source of the driest air at 500hPa. Now this uses what is called the advection-condensation method, something I hope to cover in a later article on water vapor. But for interest, here is their result:

From Roca et al 2012

From Roca et al 2012

Figure 7

The middle graph is the first graph with air sourced from the extra-tropics excluded.

The RHp10 distribution of the reconstructed field for the boreal summer 2003 is compared to the RHp10 distribution obtained by keeping only the air masses that experienced last saturation within the intertropical belt (35S–35N) in Fig. 9. Excluding the extra-tropical last saturated air masses overall moistens the atmosphere. The domain averaged RHp10 decreases from 37 to 23% without the extra-tropical influence. While the patterns overall remain similar within the two computations, the driest areas nevertheless appear more impacted and less spread in the tropics only case (Fig. 9 middle). The very dry features in the subtropical south Atlantic is mainly built from tropical originating air with the fraction of extra-tropical influence less than 10% (Fig. 9c).

Conclusion

Even if a monthly mean value of a climatological value from a model matches the measurement monthly mean it doesn’t necessarily mean that the consequences for the climate are the same.

Small changes in the distribution of values (for the same average) can have significant impacts. Here we see that this is the case for dry regions.

In Clouds & Water Vapor – Part Five – Back of the envelope calcs from Pierrehumbert we saw that these dry regions have a big role in cooling the tropics and therefore in regulating the temperature of the planet. Understanding more about the distribution of humidity and the mechanisms and causes is essential for progress in climate science.

Articles in the Series

Part One – introducing some ideas from Ramanathan from ERBE 1985 – 1989 results

Part One – Responses – answering some questions about Part One

Part Two – some introductory ideas about water vapor including measurements

Part Three – effects of water vapor at different heights (non-linearity issues), problems of the 3d motion of air in the water vapor problem and some calculations over a few decades

Part Four – discussion and results of a paper by Dessler et al using the latest AIRS and CERES data to calculate current atmospheric and water vapor feedback vs height and surface temperature

Part Five – Back of the envelope calcs from Pierrehumbert – focusing on a 1995 paper by Pierrehumbert to show some basics about circulation within the tropics and how the drier subsiding regions of the circulation contribute to cooling the tropics

Part Six – Nonlinearity and Dry Atmospheres – demonstrating that different distributions of water vapor yet with the same mean can result in different radiation to space, and how this is important for drier regions like the sub-tropics

Part Seven – Upper Tropospheric Models & Measurement – recent measurements from AIRS showing upper tropospheric water vapor increases with surface temperature

Part Eight – Clear Sky Comparison of Models with ERBE and CERES – a paper from Chung et al (2010) showing clear sky OLR vs temperature vs models for a number of cases

Part Nine – Data I – Ts vs OLR – data from CERES on OLR compared with surface temperature from NCAR – and what we determine

Part Ten – Data II – Ts vs OLR – more on the data

References

Tropical and Extra-Tropical Influences on the Distribution of Free Tropospheric Humidity over the Intertropical Belt, Roca et al, Surveys in Geophysics (2012) – paywall paper

Variability of subtropical upper tropospheric humidity, Ryoo, Waugh & Gettelman, Atmospheric Chemistry and Physics Discussions (2008) – free paper

In Atmospheric Circulation – Part One we saw the Hadley circulation: convection in the tropics and subsidence in the subtropics:

From Marshall & Plumb (2008)

Figure 1

The distribution of relative humidity in the atmosphere is a result of this circulation.

The sun heats the tropical ocean surface which both warms the air just above it and also evaporates water into this air. This hot moist air rises. As this air rises it cools, due to adiabatic expansion (see Potential Temperature), and water vapor condenses out, releasing the latent heat stored. The strongest examples are known as deep convection because the convected air rises all the way to the tropopause (the top of the troposphere).

Cold air can hold much less water vapor than hot air – for example, air at 30°C can hold seven times as much water vapor as air at 0°C. Air at the warmest ocean surface can hold about 1,000 times (in g/kg) more water vapor than the coldest point in the atmosphere (the tropical tropopause).

So by the time convected air reaches the very cold tropopause (top of the troposphere) it has become very dry.

Once at the tropopause it slowly subsides, and warms due to compression by the atmosphere [updated sentence Dec  27th]. During this subsidence, the absolute amount of water vapor doesn’t increase (no source of new water vapor), but the temperature does increase. Therefore, the relative humidity (RH) – the amount of water vapor present vs the maximum that could be held – keeps decreasing.

Here is the annual average of relative humidity (originally shown in Clouds and Water Vapor – Part Two):

From Soden (2006)

Figure 2

The tropical troposphere is moist, while the sub-tropics are much drier. Here is the frequency of very low humidity at 500hPa (about 5.8 km altitude) from Roca et al (2012):

From Roca et al 2012

Figure 3

And from the same paper, a longer term average of the free tropospheric humidity (FTH = humidity above the boundary layer) to the left and the frequency of occurrence of very low humidity (<10%) to the right:

From Roca et al 2012

Figure 4

Why are we interested in very low humidity?

Pierrehumbert 1995

There are a number of climate scientists with a significant contribution to the study of water vapor in climate, and with apologies to people I have missed, my own informal list includes Richard S Lindzen, Kenneth Minschwaner, Kerry Emmanuel, Isaac M Held, Brian J Soden, Raymond T Pierrehumbert, Steven C Sherwood, Andrew E Dessler, Rémy Roca.

Pierrehumbert wrote a 1995 paper, Thermostats, radiator fins, and the local runaway greenhouse, which seems to be somewhat out of date now but a good starting point to illustrate some important concepts. (A more comprehensive paper on the background to this topic is Pierrehumbert’s 1999 paper, reference below).

The author comments:

Our version of the single-cell model is distinguished primarily by a choice of some radical simplifications that allow us to bring out the central behavior transparently. The chief utility of the model is didactic. We introduce it to bring out in concrete terms the repercussions of some of the phenomena discussed in section 3. It has too many adjustable parameters and too much missing physics to enable reliable quantitative projections of climate change to be made, but it will be nonetheless of interest to see whether such a model can be made to yield earthlike conditions..

[Emphasis added]. For those who are unfamiliar with climate models, this is much much much simpler than any real climate model. As an aside Isaac Held has a great article on the rationale for, and problem of, simplifying climate models in The ‘Fruit Fly’ of Climate Models. It’s an article more about making simpler GCM’s than about making 2-box models, but the points are still valid.

Below, the tropics represented in two parts – the convective region with high humidity, and the subsiding region with low humidity.

From Pierrehumbert 1995

Figure 5

The essence of the main part of his paper is that the tropical atmosphere, with high humidity, is not very efficient at radiating away the large amounts of solar heat absorbed, while the low humidity subsiding region is much more effective at this.

Here is a simplified example demonstrating the problem of radiating away high incident solar radiation as relative humidity (RH) increases (very simplified because this atmospheric profile has a constant RH above the boundary layer):

From Pierrehumbert 1995

Figure 6

Pierrehumbert comments:

From Fig. 2 [figure 6 in this article] we see that if the full annual-mean insolation of 420 W/m² were absorbed, T(0) would run away to temperatures in excess of 340K for any relative humidity greater than 25%. Even in Sc [solar radiation] is reduced to 370 W/m² to account for the mean clear sky albedo in the tropics, the temperature would run away for relative humidities as low as 50%.

Considered locally, the present-day tropics would thus be in a runaway state (or nearly so) so long as it is sufficiently close to saturation.

Clouds do not alter this conclusion because insofar as Cs + Cl = 0 in the tropics the reduction in solar absorption is compensated by an equal reduction in OLR. In order to stabilize the tropical runaway, one must appeal to the lateral heat transports out of the moist regions. Satellite observations show OLR of 300 W/m² or less over the warmest tropical oceans, confirming the inability of the warmest oceans to get rid of the absorbed solar radiation locally.

(See Note 1).

So, of course, one well known mechanism for tropical cooling is export of heat to higher latitudes. Basic climate texts demonstrate that this takes place as a matter of course by plotting the absorbed solar radiation vs OLR by latitude. The tropics absorb more energy than they radiate, while the poles radiate more than they absorb. The average poleward transport of energy by latitude can be calculated as a result.

The other mechanism of tropical cooling takes place in the subsiding regions of the tropics.

Pierrehumbert comments (on his simple model):

The warm pool atmosphere cannot get rid of its heat, because of the strong water vapor greenhouse effect; this heat must be exported via zonal and meridional heat fluxes, to drier regions where it can be radiated to space. These dry, non-convective regions act like “radiator fins” stuck into the side of the warm pool atmosphere. The “super greenhouse” shape of the clear-sky OLR curve in the analysis of Raval and Ramanathan (1989) and Ramanathan and Collins (1991) provides direct evidence for radiator fins, since it shows that OLR is generally higher in some cooler SST regions than it is over the warmest tropical waters.

How does Air at the Tropopause Subside?

The air at the tropopause is very cold. Why doesn’t it sink down below the warmer air underneath?

This question was answered in Potential Temperature. Air that rises cools even without any exchange of heat with the surroundings (due to losing internal energy while doing work expanding against the lower pressure).

Air that sinks warms without any exchange of heat with the surroundings (due to gaining internal energy from work done on it by the compression of the higher pressure atmosphere).

And the formulas for both of these processes are very simple and well-understood. So the important graph is the graph of potential temperature vs altitude (or pressure), which shows what temperature each parcel of air would have if it was moved to the surface without any exchange of heat. It allows us to properly compare air temperature at different heights (pressures).

We see that potential temperature – the real comparison metric – increases with height. This is to be expected – warmer air floats above cooler air:

From Marshall & Plumb (2008)

Figure 7 – Click for a larger image

So, if we take air, warmed by strong solar heating at the surface, and raise it quickly to the tropopause, how does it ever come down?

Consider the air with potential temperature of 360K (almost 87°C if moved adiabatically back to the surface). If it starts to sink it warms (due to compression by the atmosphere) and its natural buoyancy pushes it back up.

Radiative Cooling

The mechanism for air to subside involves losing heat “diabatically”. Adiabatic means no exchange of heat with surroundings, which can happen with rapid air movement during convection. Diabatic means there is an exchange of heat with the surroundings.

And as the air cools it sinks. (Its actual & potential temperature decreases, allowing it to sink, but then compressional warming takes place and its actual temperature increases).

From Minschwaner & McElroy 1992

Figure 8

If there was no radiative cooling there would be no gentle subsidence, at least nothing like the current process we see in the atmosphere.

Skip the next section if you don’t like maths..

Maths Digression

There is an equation for the subsiding region which relates the heating rate (=-cooling rate), H, with two important parameters:

H ∝ cp.ω.∂θ/∂p

where H = heating rate (=-cooling rate), ∝ is the symbol for “proportional to”, c= heat capacity of air under constant pressure, ω = rate of change of pressure with time following the parcel (how fast the parcel is ascending or descending), ∂θ/∂p = change in potential temperature with pressure, so this is a measure of the atmospheric stratification

The two important parameters are:

  • ω – subsidence rate
  • ∂θ/∂p – stratification of the atmosphere

The value H is essentially dependent on the amount of radiatively-active gases in the atmosphere in the subsiding region. There is also an effect from any mixing with extra-tropical colder air.

Results from the Teaching Model

Here is a sample result from Pierrehumbert’s model under some simplified assumptions (no ocean heat transport and no heat transfer between tropics and extra-tropics).

The solid curve is Energy In to the warm pool = absorbed solar – cooling due to atmospheric circulation from the cold pool. The dashed curve is Energy Out from the warm pool:

From Pierrehumbert 1995

From Pierrehumbert 1995

Figure 9

Pierrehumbert makes the comment that the stability of the solution depends on the steepness of the solid curve and this is due to the fixed emissivity of the “cold pool” atmosphere. Remember that the region with subsidence has little water vapor above the boundary layer. In fact, as we will see in the upcoming graphs, it is the ability of the subsiding region to cool via radiation that allows the atmospheric circulation.

Here is set of graphs under the same simplified assumptions (and with RH=100% in the warm pool) showing how the surface temperature (Ts1 = warm pool sea surface temperature, Ts2 = cold pool sea surface temperature) varies with emissivity of the cold pool atmosphere. Each graph is a different ratio of surface area of cold pool vs warm pool. Remember that the “warm pool” is the convecting regions and the “cold pool” is the subsiding regions:

From Pierrehumbert 1995

From Pierrehumbert 1995

Figure 10

We can see that when the emissivity of the cold pool region is very low (when the amount of “greenhouse” gases is very low) the warm pool regions go into a form of thermal runaway. This is because radiative cooling is now very ineffective in the subsiding regions and so the tropical large-scale atmospheric circulation (the Hadley circulation) is “choked up”. If air can’t cool, it can’t descend, and so the circulation slows right down.

Consider the case where there is much less CO2 in the atmosphere – then the emissivity is governed mostly by water vapor. So the dry subsiding region has little ability to radiate any heat to space – preventing subsidence – but the hot moist convecting region cannot radiate sufficient heat to space because the emission to space is coming from higher up in the atmosphere, e.g. see fig. 6, of the water vapor.

So increasing the emissivity from zero (increasing “greenhouse” gases) cools the climate to begin with. Then as the emissivity increases past a certain point the warm pool surface temperatures start to increase again.

And so long as the cold pool area is large enough compared with the warm pool area the temperatures can be quite reasonable – even without any export of heat to higher latitudes.

This is a very interesting result. We see that climate is not “linear”. In simple terms “not linear” means that just because one area cools down by 1°C doesn’t mean that an equal size area must heat up by 1°C.

Now we see a result with slightly more realistic boundary conditions – heat is exported to higher latitudes (and RH reduced to 75% in the warm pool):

From Pierrehumbert 1995

From Pierrehumbert 1995

Figure 11

Overall, the result of the (slightly) more realistic conditions is simply reducing the temperatures. This is not surprising.

Conclusion

The 1995 paper is quite complex and covers more than this topic (note for keen readers, the end of the paper has a summary of all the terms used in the paper, something I wish I had known while trying to make sense of it).

The model is a very simplified model of the atmosphere and can easily be criticized for any of the particular assumptions it makes.

The reason for highlighting the paper and drawing out some of its conclusions is because there is a lot of value in understanding:

  • the large scale circulation
  • its effect on water vapor
  • what factors allow air near the tropopause to cool and descend
  • the non-linearity of climate

Of particular interest might be understanding that more “greenhouse” gases in the subsiding regions allow a faster circulation, which in turn removes more heat from the climate than a slower circulation.

Articles in the Series

Part One – introducing some ideas from Ramanathan from ERBE 1985 – 1989 results

Part One – Responses – answering some questions about Part One

Part Two – some introductory ideas about water vapor including measurements

Part Three – effects of water vapor at different heights (non-linearity issues), problems of the 3d motion of air in the water vapor problem and some calculations over a few decades

Part Four – discussion and results of a paper by Dessler et al using the latest AIRS and CERES data to calculate current atmospheric and water vapor feedback vs height and surface temperature

Part Five – Back of the envelope calcs from Pierrehumbert – focusing on a 1995 paper by Pierrehumbert to show some basics about circulation within the tropics and how the drier subsiding regions of the circulation contribute to cooling the tropics

Part Six – Nonlinearity and Dry Atmospheres – demonstrating that different distributions of water vapor yet with the same mean can result in different radiation to space, and how this is important for drier regions like the sub-tropics

Part Seven – Upper Tropospheric Models & Measurement – recent measurements from AIRS showing upper tropospheric water vapor increases with surface temperature

Part Eight – Clear Sky Comparison of Models with ERBE and CERES – a paper from Chung et al (2010) showing clear sky OLR vs temperature vs models for a number of cases

Part Nine – Data I – Ts vs OLR – data from CERES on OLR compared with surface temperature from NCAR – and what we determine

Part Ten – Data II – Ts vs OLR – more on the data

References

Atmosphere, Ocean and Climate Dynamics, Marshall & Plumb, Elsevier Academic Press (2008)

Tropical and Extra-Tropical influences on the distribution of free tropospheric humidity over the inter-tropical belt, Roca et al, Surveys in Geophysics (2012)

Thermostats, radiator fins, and the local runaway greenhouse, Pierrehumbert, Journal of the Atmospheric Sciences (1995) – free paper

Subtropical Water Vapor As a Mediator of Rapid Global Climate Change, Pierrehumbert, (1999)

Notes

Note 1 – The statement:

Clouds do not alter this conclusion because insofar as Cs + Cl = 0 in the tropics the reduction in solar absorption is compensated by an equal reduction in OLR

relates to the fact that in the tropical region the overall cloud effect is close to zero. This is surprising and the subject of much study. For a starting point see On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions, J.T. Kiehl, Journal of Climate (1994)

In Atmospheric Circulation – Part One we saw how the higher temperatures in the tropics vs the poles (due to higher solar insolation in the tropics) led to a greater “geopotential height”. This means simply that the height of a given atmospheric pressure (e.g. 500mbar) is greater in the tropics, and so the geopotential surfaces slope down from the tropics to the poles.

And in Atmospheric Circulation – Part Two – Thermal Wind we saw how that effect, due to the Coriolis force, causes a W-E wind (“zonal wind”) that increases with height. This culminates in the sub-tropical jets (see figure 5) that are a maximum around 30°.

The question arise – why don’t the zonal winds just keep increasing in the poleward direction? Why the peak value at the sub-tropics?

Conservation of Angular Momentum

The angular momentum of a parcel of air is conserved if there is no net torque acting on that parcel.

So let’s consider a parcel of air at the equator at rest with respect to the surface of the earth. Now let’s push that parcel of air out towards the north pole and let’s calculate the resulting net W-E velocity of that parcel.

The angular momentum at the equator is significant because the earth is rotating. At the parcel of air moves north, the radius around the axis of rotation continually reduces (at the pole the radius around the axis of rotation = 0):

From Marshall & Plumb (2008)

Figure 1

– and so for conservation of angular momentum the W-E velocity of the air with respect to the ground must increase.

The maths is simple to calculate, here is a calculation of the resulting W-E velocity if angular momentum is conserved:

Figure 2

If we refer back to figure 5 in Part Two we see that the annual average maximum of the zonal winds is around 30 m/s.

It’s clear what is going on – as parcels of air move towards the pole they speed up (due to conservation of annual momentum) to the point where the large scale atmospheric motions break down and eddies take over. A lab example of this effect was shown in the previous article:

From Marshall & Plumb (2008)

Figure 3

The rotational speed of the earth is a critical factor.

Here are some fascinating GCM results from Williams (1988), first the zonal (W-E) winds as the planetary rotation is increased from zero to 8x the Earth’s rotation:

From Williams (1988)

Figure 4 – Click for a larger image

And second, the meridional winds (N-S winds):

From Williams (1988)

Figure 5 – Click for a larger image

And finally the average temperature distribution in the N-S direction:

From Williams (1988)

Figure 6 – Click for a larger image

We see that the effect of increasing rotation is to create more and more “cells” – like the Hadley cell, the tropical to sub-tropical cell, which was shown in figure 4 of Part One – and to create a stronger differential temperature from equator to pole. The faster the earth rotates the “harder” it is for warmer air to move poleward and so the differential solar heating does not get “smeared out” poleward.

This paper by Williams is quite fascinating. It has a number of simplifications like no variation in longitudinal effects, a “swamp” ocean and some factors that are fixed at the current earth’s rotation value (note 1). Isaac Held recently wrote a post, The “Fruit Fly” of Climate Models which highlights many issues around simplifying climate models to illustrate the important principles underlying climate dynamics. This post is well worth reading as well as exploring the referenced papers.

Prof. Isaac Held is one of the gurus of climate dynamics and has been writing influential papers on this (and other) topics since the mid 1970s. For example, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, Held & Hou, Journal of the Atmospheric Sciences (1980). Many scientists have contributes to this topic, including the well-known Prof. Richard. S. Lindzen with Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized calculations, EK Schneider & RS Lindzen, Journal of the Atmospheric Sciences (1977).

In the next article we will look at how eddy motions transport heat to the poles outside of the Hadley cell.

References

The dynamical range of global circulations I, Gareth Williams, Climate Dynamics (1988) – behind paywall

Notes

Note 1 – Extract from the Introduction of Williams (1988):

In this paper (to be published in two parts), we generate a comprehensive set of circulations by varying some of the fundamental external parameters and primary internal factors that control the dynamics of a terrestrial global circulation model (GCM). The solutions are developed for two purposes: (1) to study basic circulation dynamics; and (2), to define the parametric variability of circulations.

By altering the size, strength, and mix of the eddies, jets, and cells in a variety of flow forms, we hope to develop further insight into how they arise and interact. By developing a wide range of circulations, we hope to gain perspective on the parametric circumstance of Earth’s climate and to broaden the data base from which we extrapolate in theorizing about other planets and other climates (Hunt 1979a, b, 1982).

To generate as complete a circulation set as possible, we evaluate moist, dry, axisymmetric, oblique, and diurnal model atmospheres over a wide range of rotation rates: Ω* = 0-8, where Ω*= Ω/ΩE is normalized by the terrestrial value.

For the set to be meaningful, the GCM must be valid at all parameter values. We believe this to be so, although we cannot prove it. The GCM has some known limitations, such as the non-universal boundary-layer and radiation formulations, but these do not affect the fundamental structure of the flows. We also assume, in presenting the solutions, the hypothesis that circulation variability is limited to the mix of a few elementary components that can be understood in terms of regular quasi-geostrophic (QG) and Hadley theories. The interpretation of the solutions in terms of these theories is essentially qualitative — just as it is for the terrestrial (Ω* = 1) case (Held and Hoskins 1985).

The modern view of the terrestrial circulation is still based on the explanation summarized by Lorenz (1967, 1969): that in low latitudes, the time-averaged flow is mainly the product of thermal forcing (as suggested by Palm6n) and described by quasi-Hadley (QH) theories; that in mid-latitudes, the time- and zonal-averaged flow is essentially the product of forcing by the large-scale eddies (as suggested by Eady, Rossby and Starr) and described by QG theories; and that the two flows and regions interact extensively.

In the Northern Hemisphere, strong orographically driven standing waves complicate this view (Wallace and Lau 1985), but we ignore surface inhomogeneities in this paper. The outstanding circulation issue posed by Lorenz in 1969 concerned the role of the eddies in forming and maintaining the angular-momentum characteristics: why is the eddy-momentum transport mainly poleward; what is the basic state with which the eddies interact; what form does the idealized symmetric-Hadley (SH) state take and how does it relate to the natural state? Some of these questions have been resolved and new ones have emerged..

And from Section 2.5, Non-universal model features:

As a representation of Earth’s atmosphere, the GCM has significant deficiencies. For example, it omits land surfaces and ocean transports, it does not forecast the cloud, carbon dioxide and ozone distributions, and it has no snowcover or ice-albedo feedbacks. The imposed distributions of the minor gases, clouds, and albedo in the radiation calculation relate only to the Ω*= 1 state and at other Ω* produce only a relative forcing and circulation. But for our purposes any reasonable thermodynamical forcing suffices and the strong tuning of the radiative heating to conditions at Ω*=1 at least provides a realistic reference state.

A more troublesome non-universality having a more direct dynamical impact lies in the PBL formulation. In the GCM, the PBL is assumed to be neutrally stable so that only mechanical mixing occurs and the associated Prandtl- and Ekman layer depths are fixed at empirical values.

This prescription provides a reasonable first approximation for Ω*= 1 studies. Although a formulation with ze ~ Ω-1 would be more appropriate for an Ω*-varying GCM, even it fails at low Ω*. Given such limitations, we decided not to make the PBL formulation a function of Ω*. Thus the PBL parameters, like the radiation ones, are fixed at their Ω*= 1 values. This is not a satisfying compromise to make but it does eliminate the great inconvenience of having to make the vertical grid spacing a function of Ω*. We believe that these PBL limitations mainly affect the surface winds and do not significantly influence circulation structure.

In Atmospheric Circulation – Part One we saw how the pressure “slopes down” from the tropics to the poles creating S→N winds in the northern hemisphere.

In The Coriolis Effect and Geostrophic Motion we saw that on a rotating planet winds get deflected off to the side  (from the point of view of someone on the rotating planet). This means that winds flowing from the tropics to the north pole will get deflected “to the right”.

Taylor Columns

Strange things happen to fluids in rotating frames. To illustrate let’s take a look at Taylor columns.

From Marshall & Plumb (2008)

Figure 1

The static image is quite beautiful, but the video illustrates it better. Compare the video of the non-rotating tank with the rotating tank.

Now to stretch the mind we have a rotating tank with an obstacle on the base – in this case a hockey puck. The height of the puck is small compared with the depth of the fluid. The fluid flow has come into equilibrium with the tank rotation.

We slow down the rotation slightly. We sprinkle paper dots on the surface of the water. Amazingly the dots show that the surface of the fluid is acting as if the puck extended right up to the surface – the flow moves around the obstacle at the base (of course) and the flow moves “around” the obstacle at the surface. Even though the obstacle doesn’t exist at the surface!

Take a look at the video, but here are a few snapshots:

Figure 2

This occurs when:

  • the flow is slow and steady
  • friction is negligible
  • there is no temperature gradient (barotropic)

Under the first two conditions the flow is geostrophic which was covered with examples in The Coriolis Effect and Geostrophic Motion.

And under the final condition, with  no temperature gradient the density is uniform (only a function of pressure).

“Thermal Wind”

Now let’s look at an experiment with a “cold pole” and “warm tropics”:

From Marshall & Plumb (2008)

Figure 3

The result:

Figure 4

Even better – take a look at the video.

This experiment shows that once there is a N-S temperature gradient the E-W winds increase with altitude.

Which is kind of what we find in the real atmosphere:

From Marshall & Plumb (2008)

Figure 5

Why does this happen? I found it hard to understand conceptually for a while, but it’s actually really simple:

From Stull (1999)

Figure 6

So the ever increasing pressure gradient with height (due to the temperature gradient) induces a stronger geostrophic wind with height.

Here is an instantaneous measurement of E-W winds, along with temperature in a N-S section:

From Marshall & Plumb (2008)

Figure 8

The measurement demonstrates that the change in E-W wind vs height depends on the variation in N-S temperature.

The equation for this effect for the E-W winds can be written a few different ways, here is the easiest to understand:

∂u/∂z = (αg/f) . ∂T/∂y

where ∂u/∂z = change in E-W wind with height, α = thermal coefficient of expansion of air, g = acceleration due to gravity, f = coriolis parameter at that latitude, T = temperature, y = N-S direction

It can also be written in vector calculus notation:

u/∂z = (αg/f)z x ∇T

where u = wind velocity (u, v, w), = unit vector in vertical

In the next article we will look at why the maximum effect in the average, the jet stream, occurs in the subtropics rather than at the poles.

References

Meteorology for Scientists and Engineers, Ronald Stull, 2nd edition – Free (partial) resource

Atmosphere, Ocean and Climate Dynamics – An Introductory Text, Marshall & Plumb, Academic Press (2008)

This is a tricky but essential subject and it’s hard to know where to begin.

Geopotential Height – The Height of a Given Atmospheric Pressure

Let’s start with something called the geopotential height. This is the height above the earth’s surface of a particular atmospheric pressure. In the example below we are looking at the 500 mbar surface. For reference, the surface of the earth is at about 1000 mbar and the top of the troposphere is at 200 mbar.

From Marshall & Plumb (2008)

Figure 1

At the pole the 500 mbar height is just under 5 km, and in the topics it is almost 6 km.

Why is this?

Here is another view of the same subject, this time the annual average latitudinal value (expressed as difference from the global average):

From Marshall & Plumb (2008)

Figure 2

See how the geopotential height increases in the tropics compared with the poles. And see how the difference increases with height.

The tropics are warmer than the poles – warm air expands and cool air contracts.

There is a mathematical equation which results from the ideal gas law and the hydrostatic equation:

z(p) = R/g ∫(T/p)dp

where z(p) = height of pressure p, R = gas constant, g = acceleration due to gravity, T = temperature

This is (oversimplified) like saying that the height of a “geopotential surface” is proportional to the sum of the temperatures of each layer between the surface and that pressure.

At 500 mbar, a 40ºC change in temperature leads to a height difference of just over 800 m.

North-South Winds

Because of the pressure gradient at altitude between the tropics and the poles, there is a force (at altitude) pushing air from the tropics to the poles.

From Goody (1972)

If the earth was rotating extremely slowly, the result might look something like this:

From Marshall & Plumb (2008)

Figure 3

However, the climate is not so simple. Here are 3 samples of the north-south circulation for annual, winter and summer:

From Marshall & Plumb (2008)

Figure 4

So instead of a circulation extending all the way to the poles we see a circulation from the tropics into the subtropics (note especially the DJF & JJA averages).

Here is an experiment shown in Goody (1972) to help understand the processes we see in the atmosphere:

Figure 5

Note that the first example is with slow rotation and the second example is with fast rotation.

And here is a similar experiment shown in Marshall & Plumb, but they come with videos, which help immensely. First the slow rotation experiment:

Figure 6

And second, the fast rotation experiment:

Figure 7

In both of the above links, make sure to watch the videos.

The reason the circulation breaks down from a large equator-polar cell to the actual climate with an equator-subtropical cell plus eddies is complex. We’ll explore more in the next article.

As a starter, take a look at the west-east winds:

From Marshall & Plumb (2008)

Figure 8

In the next article we will look at the thermal wind and try and make sense out of our observations.

Update – now published:

Atmospheric Circulation – Part Two – Thermal Wind

References

Atmosphere, Ocean and Climate Dynamics – An Introductory Text, Marshall & Plumb, Academic Press (2008)

Atmospheres, Goody & Walker, Prentice Hall (1972)

In How the “Greenhouse” Effect Works – A Guest Post and Discussion there was considerable discussion about the temperature profile in the atmosphere and how it might change with more “greenhouse” gases. The temperature profile is also known as the lapse rate.

The lapse rate has already been covered in Potential Temperature and for those new to the subject Density, Stability and Motion in Fluids is also worth a read.

Some Basics

Let’s take a look at a stable (dry) atmospheric temperature profile:

Figure 1 – Just Stable 

The graph on the left is the potential temperature, θ, and on the right the “real temperature”, T. The temperature declines by 10°C per km (and this value is not affected by any “greenhouse” gases). The potential temperature is constant. Remember that for stable atmospheres the potential temperature cannot reduce with height.

A quick recap from Potential Temperature:

  • “potential temperature” stays constant when a parcel of air is displaced “quickly” to a new height (note 1)
  • potential temperature is the actual temperature of a parcel of air once it is moved “quickly” to the ground
  • in dry atmospheres the actual temperature change is about 10°C per km

Now an unstable atmosphere:

Figure 2 – Unstable

Because the temperature at a given altitude is “too cold”, when any air is displaced from the surface it will of course cool, but finish warmer at 1km and 2km than the environment and so keep rising. This situation is unstable – leading to convection until the stable situation in figure 1 is reached.

We can also see that the potential temperature decreases with altitude, which is another way of conveying the same information.

The important comparison between the first two graphs is to understand that figure 2 can never be stable. The atmosphere will always correct this via convection. Exactly how long it takes to revert to figure 1 depends on dynamic considerations.

Let’s look at another scenario:

Figure 3 – Very Stable

Now the temperature reduces with height, but not sufficiently to induce convection. So a parcel of air displaced from the surface ends up colder than the surrounding air and sinks back down.

And we can even get temperature inversions, very popular in polar winter and nighttime in many locations:

Figure 4 – Very very stable

So how do figures 3 & 4 come undone? Surely once the atmosphere is stable to convection then it becomes static and heat can only move radiatively from the surface into the atmosphere?

The basic principle of heat movement in the climate is that the sun warms the surface (because the atmosphere is mostly transparent to solar radiation) and so the atmosphere is continually warmed from underneath.

Figure 5 – Atmospheric temperature changes as surface warms

As the surface warms the atmospheric temperature profiles move from a → d. This is a result of convection. But where does all this heat go that was convected from the surface into the atmosphere.

Here is a graphic reproduced from Understanding Atmospheric Radiation and the “Greenhouse” Effect – Part Eleven – Heating Rates:

From Petty (2006)

Figure 6 – Radiative Cooling of the Atmosphere

This illustrates that the atmosphere is always cooling via radiation to space – and cooling at all altitudes.

So the atmosphere cools via radiation, the surface warms from solar radiation and when the lapse rate reaches a critical value convection is initiated which moves heat from the surface back into the atmosphere.

As a minor question, how does a temperature inversion ever get created? It’s a temporary thing. In the case of nighttime, the surface can lose heat via radiation more quickly than the atmosphere. The surface is a more effective radiator than the atmosphere. In the case of the polar winter, the same effect takes place over a longer timescale. But eventually, when the sun comes up, the surface gets reheated.

Where Convection Stops – The Tropopause

Actually there are a few different definitions for the tropopause. But let’s save that for another day. There is a point at which convection stops. Why?

Suppose there was no convection, only radiation. If we consider heat transfer via radiation then there is a change as the atmosphere thins out.

Let’s take a massively over-simplistic approach to help newcomers. Suppose a photon of a given wavelength has to normally travel 100 molecules before getting absorbed. In this case, as the atmosphere thins out from 1000 mbar (surface) to 200 mbar (typical tropopause), the same photon would have to travel 400 molecules before getting absorbed. This means that the temperature change vs height reduces the more the atmosphere thins out. As a way of thinking, it’s like the resistance to temperature change reduces as the atmosphere thins out.

A simple example of radiative equilibrium for gray atmospheres (note 2) is given in Vanishing Nets:

Figure 7 – Radiative Equilibrium

See how the temperature change with height (the lapse rate) reduces the higher we go. So at a certain point the potential temperature always increases with height, making the atmosphere resistant to convection.

The point at which the radiative lapse rate is less than the adiabatic lapse rate is where the atmosphere stops convecting. However, this is not technically the tropopause (note 3).

Another way to think about this for newcomers is that the temperature reduction caused by lifting a parcel of (dry) air 1km is always about 10°C. So if the temperature reduction due to radiative heat transfer is 5°C then the lifted parcel is always cooler than the surrounding air and so sinks back = no convection.

Now the atmosphere is not gray so this is not a simple problem, but it can be solved using the radiative transfer equations with numerical methods.

We can see the real (averaged) climate in this graphic of potential temperature:

From Marshall & Plumb (2008)

Figure 8

In the tropics the (moist) potential temperature is close to constant with altitude until about 200 mbar. And at other latitudes the potential temperature increases with height very strongly once we get above about 300 mbar. This shows that the atmosphere is stratified above certain altitudes.

Increasing CO2 – The Simple Aspects

Let’s consider the simple aspects of more CO2. These got a lot of discussion in How the “Greenhouse” Effect Works – A Guest Post and Discussion.

We increase the amount of CO2 in the atmosphere but at the surface the change in downwards longwave radiation (DLR) from the atmosphere is pretty small, perhaps insignificant.

By comparison, at the top of atmosphere (TOA) the radiative effect is significant. The atmosphere becomes more opaque, so the flux from each level to space is reduced by the intervening atmosphere. Therefore, the emission of radiation moves upwards, and “moving upwards” means from a colder part of the atmosphere. Colder atmospheres radiate less brightly and so the TOA flux is reduced.

This reduces the cooling to space and so warms the top of the troposphere. Therefore, there will be less convective flux from the surface into this part of the atmosphere.

As a result the surface warms.

Increasing CO2 – The Complex Aspects

The real world environmental lapse rate is more complex than might be inferred from the earlier descriptions. This is because the large scale circulation of the atmosphere results in environmental temperature profiles that are different from the adiabatic lapse rates.

The environment can never end up with a greater lapse rate than the adiabatic lapse rate but it can easily end up with a smaller one.

More on this in another article. But as a taster, here are some monthly averaged environmental lapse rates:

From Stone & Carlson (1979)

Figure 9

From Stone & Carlson (1979)

Figure 10

And of course, one of the biggest questions in an atmosphere with more CO2 is how water vapor concentration changes in response to surface temperature change. Changes in water vapor have multiple effects, but the one for consideration here is the change to the lapse rate. The dry adiabatic lapse rate is 9.8 °C/km, while the moist adiabatic lapse rate varies from 4 °C/km in the tropics near the surface (where the water vapor concentration is highest).

Consider an atmosphere where the temperature reduces by 15 °C in 2km. Dry air moving upwards reduces in temperature by 20 °C – which is colder than the surrounding air – and so it sinks back. Very moist air moving upwards reduces in temperature by about 10 °C – which is warmer than the surrounding air – and so it keeps rising.

So more moisture reduces the lapse rate, effectively making the atmosphere more prone to convection – moving heat into the upper troposphere more effectively. (Cue tropical hotspot discussion).

References

Atmospheric Lapse Rates and Their Parameterization, Stone & Carlson, Journal of the Atmospheric Sciences (1979) – Free paper

Notes

Note 1: A parcel of air displaced “quickly” to a new height is written for ease of understanding. Technically, potential temperature stays constant if a parcel of air is displaced “adiabatically” – which means no exchange of heat with the surrounding atmosphere.

Note 2: A gray atmosphere is one where the absorption vs wavelength is constant. More technically, this is usually a “semi-gray” atmosphere because the atmosphere is transparent to solar radiation but absorbs terrestrial radiation.

Note 3: The tropopause is usually defined where the lapse rate is at a minimum. In radiative equilibrium the temperature would continue to decrease with height even after the point where convection stops. It is only the presence of radiative gases (ozone) that absorb solar radiation that cause the stratospheric temperatures to increase.

Here is an article from Leonard Weinstein. (It has also been posted in slightly different form at The Air Vent).

Readers who have been around for a while will remember the interesting discussion Convection, Venus, Thought Experiments and Tall Rooms Full of Gas – A Discussion in which myself, Arthur Smith and Leonard all put forward a point of view on a challenging topic.

With this article, first I post Leonard’s article (plus some graphics I added for illustration), then my comments and finally Leonard’s response to my comments.

Why Back-Radiation is not a Source of Surface Heating

Leonard Weinstein, July 18, 2012

The argument is frequently made that back radiation from optically absorbing gases heats a surface more than it would be heated without back radiation, and this is the basis of the so-called Greenhouse Effect on Earth.

The first thing that has to be made clear is that a suitably radiation absorbing and radiating atmosphere does radiate energy out based on its temperature, and some of this radiation does go downward, where it is absorbed by the surface (i.e., there is back radiation, and it does transfer energy to the surface). However, heat (which is the net transfer of energy, not the individual transfers) is only transferred down if the ground is cooler than the atmosphere, and this applies to all forms of heat transfer.

While it is true that the atmosphere containing suitably optically absorbing gases is warmer than the local surface in some special cases, on average the surface is warmer than the integrated atmosphere effect contributing to back radiation, and so average heat transfer is from the surface up. The misunderstanding of the distinction between energy transfer, and heat transfer (net energy transfer) seems to be the cause of much of the confusion about back radiation effects.

Simplest Model

Before going on with the back radiation argument, first examine a few ideal heat transfer examples, which emphasize what is trying to be shown. These include an internally uniformly heated ball with either a thermally insulated surface or a radiation-shielded surface. The ball is placed in space, with distant temperatures near absolute zero, and zero gravity. Assume all emissivity and absorption coefficients for the following examples are 1 for simplicity.

The bare ball surface temperature at equilibrium is found from the balance of input energy into the ball and radiated energy to the external wall:

T= (P/σ)0.25 ….(1)

Where To (K) is absolute temperature, P (Wm-2) is input power per area of the ball, and σ = 5.67×10-8 (Wm-2T-4) is the Stefan-Boltzmann constant.

Ball with Insulation Layer

Now consider the same case with a relatively thin layer (compared to the size of the ball) of thermally insulating material coated directly onto the surface of the ball. Assume the insulator material is opaque to radiation, so that the only heat transfer is by conduction. The energy generated by input power heats the surface of the ball, and this energy is conducted to the external surface of the insulator, where the energy is radiated away from the surface. The assumption of a thin insulation layer implies the total surface area is about the same as the initial ball area.

Figure 1 – Ball with Insulation

The temperature of the external surface then has to be the same (=T) as the bare ball was, to balance power in and radiated energy out. However, in order to transmit the energy from the surface of the ball to the external surface of the insulator there had to be a temperature gradient through the insulation layer based on the conductivity of the insulator and thickness of the insulation layer.

For the simplified case described, Fourier’s conduction law gives:

qx=-k(dT/dx) ….(2)

where qx (Wm-2) is the local heat transfer, k (Wm-1T-1) is the conductivity, and x is distance outward of the insulator from the surface of the ball. The equilibrium case is a linear temperature variation, so we can substitute ΔT/h for dT/dx, where h is the insulator thickness, and ΔT is the temperature difference between outer surface of insulator and surface of ball (temperature decreasing outward).

Now qx has to be the same as P, so from (2):

ΔT = (To-T’) = -Ph/k ….(3)

Where T’ is the ball surface temperature under the insulation, and thus we get:

T’ = (Ph/k)+To ….(4)

The new ball surface temperature is now found by combining (1) + (4):

T’ = (Ph/k)+(P/σ)0.25 ….(5)

The point to all of the above is that the surface of the ball was made hotter for the same input energy to the ball by adding the insulation layer. The increased temperature did not come from the insulation heating the surface, it came from the reduced rate of surface energy removal at the initial temperature (thermal resistance), and thus the internal surface temperature had to increase to transmit the required power.

There was no added heat and no back heat transfer!

Ball with Shell & Conducting Gas

An alternate version of the insulated surface can be found by adding a thin conducting enclosing shell spaced a small distance from the wall of the ball, and filling the gap with a highly optically absorbing dense gas. Assume the gas is completely opaque to the thermal wavelengths at very short distances, so that he heat transfer would be totally dominated by diffusion (no convection, since zero gravity).

The result would be exactly the same as the solid insulation case with the correct thermal conductivity, k, used (derived from the diffusion equations).

It should be noted that the gas molecules have a range of speeds, even at a specific temperature (Maxwell distribution). The heat is transferred only by molecular collisions with the wall for this case. Now the variation in speed of the molecules, even at a single temperature, assures that some of the molecules hitting the ball wall will have higher energy going in that leaving the wall. Likewise, some of the molecules hitting the outer shell will have lower speeds than when they leave inward. That is, some energy is transmitted from the colder outer wall to the gas, and some energy is transmitted from the gas to the hotter ball wall. However, when all collisions are included, the net effect is that the ball transfers heat (=P) to the outer shell, which then radiates P to space.

Again, the gas layer did not result in the ball surface heating any more than for the solid insulation case. It resulted in heating due to the resistance to heat transfer at the lower temperature, and thus resulted in the temperature of the ball increasing. The fact that energy transferred both ways is not a cause of the heating.

Ball with Shell & Vacuum

Next we look at the bare ball, but with an enclosure of a very small thickness conductor placed a small distance above the entire surface of the ball (so the surface area of the enclosure is still essentially the same as for the bare ball), but with a high vacuum between the surface of the ball and the enclosed layer.

Now only radiation heat transfer can occur in the system. The ball is heated with the same power as before, and radiates, but the enclosure layer absorbs all of the emitted radiation from the ball. The absorbed energy heats the enclosure wall up until it radiated outward the full input power P.

The final temperature of the enclosure wall now is To, the same as the value in equation (1).

Figure 2 – Ball with Radiation Shield separated by vacuum

However, it is also radiating inward at the same power P. Since the only energy absorbed by the enclosure is that radiated by the ball, the ball has to radiate 2P to get the net transmitted power out to equal P. Since the only input power is P, the other P was absorbed energy from the enclosure. Does this mean the enclosure is heating the ball with back radiation? NO. Heat transfer is NET energy transfer, and the ball is radiating 2P, but absorbing P, so is radiating a NET radiation heat transfer of P. This type of effect is shown in radiation equations by:

Pnet = σ(Thot4-Tcold4) ….(6)

That is, the net radiation heat transfer is determined by both the emitting and absorbing surfaces. There is radiation energy both ways, but the radiation heat transfer is one way.

This is not heating by back radiation, but is commonly also considered a radiation resistance effect.

There is initially a decrease in net radiation heat transfer forcing the temperature to adjust to a new level for a given power transfer level. This is directly analogous to the thermal insulation effect on the ball, where radiation is not even a factor between the ball and insulator, or the opaque gas in the enclosed layer, where there is no radiation transfer, but some energy is transmitted both ways, and net energy (heat transfer) is only outward. The hotter surface of the ball is due to a resistance to direct radiation to space in all of these cases.

Ball with Multiple Shells

If a large number of concentric radiation enclosures were used (still assuming the total exit area is close to the same for simplicity), the ball temperature would get even hotter. In fact, each layer inward would have to radiate a net P outward to transfer the power from the ball to the external final radiator. For N layers, this means that the ball surface would have to radiate:

P’ = (N+1)Po ….(7)

Now from (1), this means the relative ball surface temperature would increase by:

T’/To = (N+1)0.25 ….(8)

Some example are shown to give an idea how the number of layers changes relative absolute temperature:

N       T’/To

——————-
1       1.19
10      1.82
100    3.16

Change in N clearly has a large effect, but the relationship is a semi-log like effect.

Lapse Rate Effect

Planetary atmospheres are much more complex than either a simple conduction insulating layer or radiation insulation layer or multiple layers. This is due to the presence of several mechanisms to transport energy that was absorbed from the Sun, either at the surface or directly in the atmosphere, up through the atmosphere, and also due to the effect called the lapse rate.

The lapse rate results from the convective mixing of the atmosphere combined with the adiabatic cooling due to expansion at decreasing pressure with increasing altitude. The lapse rate depends on the specific heat of the atmospheric gases, gravity, and by any latent heat release, and may be affected by local temperature variations due to radiation from the surface directly to space. The simple theoretical value of that variation in a dry adiabatic atmosphere is about -9.8 C per km altitude on Earth. The effect of water evaporation and partial condensation at altitude, drops the size of this average to about -6.5 C per km, which is the called the environmental lapse rate.

The absorbed solar energy is carried up in the atmosphere by a combination of evapotransporation followed by condensation, thermal convection and radiation (including direct radiation to space, and absorbed and emitted atmospheric radiation). Eventually the conducted, convected, and radiated energy reaches high enough in the atmosphere where it radiates directly to space. This does require absorbing and radiating gases and/or clouds. The sum of all the energy radiated to space from the different altitudes has to equal the absorbed solar energy for the equilibrium case.

The key point is that the outgoing radiation average location is raised significantly above the surface. A single average altitude for outgoing radiation generally is used to replace the outgoing radiation altitude range. The temperature of the atmosphere at this average altitude then is calculated by matching the outgoing radiation to the absorbed solar radiation. The environmental lapse rate, combined with the temperature at the average altitude required to balance incoming and outgoing energy, allows the surface temperature to be then calculated.

The equation for the effect is:

T’ = To -ΓH ….(9)

Where To is the average surface temperature for the non-absorbing atmospheric gases case, with all radiation to space directly from the surface, Γ is the lapse rate (negative as shown), and H is the effective average altitude of outgoing radiation to space. The combined methods that transport energy up so that it radiated to space, are variations of energy transport resistance compared to direct radiation from the surface. In the end, the only factors that raise ground temperature to be higher than the case with no greenhouse gas is the increase in average altitude of outgoing radiation and the lapse rate. That is all there is to the so-called greenhouse effect. If the lapse rate or albedo is changed by addition of specific gases, this is a separate effect, and is not included here.

The case of Venus is a clear example of this effect. The average altitude where radiation to space occurs is about 50 km. The average lapse rate on Venus is about 9 C per km. The surface temperature increase over the case with the same albedo and absorbed insolation but no absorbing or cloud blocking gases, would be about 450 C, so the lapse rate fully explains the increase in temperature.

It is not directly due to the pressure or density alone of the atmosphere, but the resulting increase in altitude of outgoing radiation to space. Changing CO2 concentration (or other absorbing gases) might change the outgoing altitude, but that altitude change would be the only cause of a change in surface temperature, with the lapse rate times the new altitude as the increase in temperature over the case with no absorbing gases.

One point to note is that the net energy transfer (from combined radiation and other transport means) from the surface or from a location in the atmosphere where solar energy was absorbed is always exactly the same whatever the local temperature. For example, the hot surface of Venus radiated up (a very short distance) over 16 kWm-2. However, the total energy transfer up is just the order of absorbed solar energy, or about 17 Wm-2, and some of the energy carried up is by conduction and convection. Thus the net radiation heat transfer is <17 Wm-2, and thus back radiation has to be almost exactly the same as radiation up. The back radiation is not heating the surface; the thermal heat transfer resistance from all causes, including that resulting from back radiation reducing net radiation, results in the excess heating.

In the end, it does not matter what the cause of resistance to heat transfer is. The total energy balance and thermal heat transfer resistance defines the process. For planets with enough atmosphere, the lapse rate defines the lower atmosphere temperature gradient, and if the lapse rate is not changed, the distance the location of outgoing radiation is moved up by addition of absorbing gases determines the increase in temperature effect. It should be clear the back radiation did not do the heating; it is a result of the effect, not the cause.

—— End of section 1 ——

My Response

I agree with Leonard. Now for his rebuttal..

Ok, a few words of clarification. I agree with Leonard about the greenhouse mechanism, the physics and the maths but see a semantic issue about back radiation. It’s always possible it’s a point of substance disguised as a semantic issue but I think that is unlikely.

A large number of people are unhappy about climate science basics but are unencumbered by any knowledge of radiative heat transfer theory as taught in heat transfer textbooks. This group of people claim that back radiation has no effect on the surface temperature. I’ll call them Group Zero. Because of this entertaining and passionate group of people I have spent much time explaining back radiation and physics basics. Perhaps this has led others to the idea that I have a different idea about the mechanism of the inappropriately-named “greenhouse” effect.

Group Zero are saying something completely different from Leonard. Here’s my graphic of Leonard’s explanation from one of his simplified scenarios:

Figure 2 – again

From the maths it is clear that the downward radiation from the shell (shield) is absorbed by the surface and re-emitted. Here the usual graphic presented by the Group Zero position, replete with all necessary equations:

Figure 3 – how can you argue with this?

And here’s an interpretation of a Group Zero concept, pieced together by me from many happy hours of fruitless discussion:

Figure 4 – Group Z?

In this case P, the internal heating, is still a known value. But Y and X are unknown, which is why I have changed them from the solution values shown in figure 2.

Now we have to figure out what they are. Let’s make the assumption that the shell radiates equally inwards and outwards, which is true if it is thin (and so upper and lower surfaces will be at the same temperature) and has the same emissivity both sides. That is why we see the upward flux and the downward flux from the shell both = Y.

Because, according to Group Zero, the downward radiation from a colder atmosphere cannot “have any effect on” the surface, I’m going to assume their same approach to the radiation shield (the “shell”). So the surface only has the energy source P. Group Zero never really explain what happens to Y when it “reaches the ground” but that’s another story. (Although it would be quite interesting to find out along with an equation).

So at the surface, energy in = energy out.

P=X ….(10)

And at the shell, energy in = energy out.

X = 2Y ….(11)

In figure 2, by using real physics we see that the surface emission of radiation by the ball = 2P. This means the surface temperature, T’ = (2P/σ)0.25.

In figure 4, by using invented physics we see that the surface emission of radiation by the ball = P. This means the surface temperature, T'(invented) = (P/σ)0.25.

So the real surface temperature, T’ is 1.19 times larger than T'(invented). Because 20.25 = 1.19.

And back to the important point about the “greenhouse” effect. Because the atmosphere is quite opaque to radiation due to radiatively-active gases like water vapor and CO2 the emission of radiation to space from the climate system is from some altitude. And because temperature reduces with height due to other physics the surface must be warmer than the effective radiating point of the atmosphere. This means the surface temperature of the earth is higher than it would be if there were no radiatively-active gases. (The actual maths of the complete explanation takes up a lot more room than this paragraph). This means I completely agree with Leonard about the “greenhouse” effect.

If back radiation were not absorbed by the surface lots of climate effects would be different because the laws of physics would be different. I’m pretty sure that Leonard completely agrees with me on this.

—— End of section 2 ——

Leonard’s Final Comment

I think we are getting very close to agreement on most of the discussion, but I still sense a bit of disagreement to my basic point. However, this seems to be mainly based on difference in semantics, not the logic of the physics. The frequent use of the statement of heat being transferred from the cold to hot surface (like in back radiation), is the main source of the misuse of a term. Energy can be transferred both ways, but heat transfer has a specific meaning. An example of a version of the second law of thermodynamics, which defines limitations in heat transfer, is from the German scientist Rudolf Clausius, who laid the foundation for the second law of thermodynamics in 1850 by examining the relation between heat transfer and work. His formulation of the second law, which was published in German in 1854, may be stated as: “No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature.”

The specific fact of back radiation and resulting energy transfer does result in the lower surface of the cases with radiation resistance going to a higher temperature. However, this is not due to heat being transferred by back radiation, but by the internal supplied power driving the wall to a higher temperature to transfer the same power. The examples of the solid insulation and opaque gas do exactly the same thing, and back heat transfer or even back energy transport is not the cause of the wall going to the higher temperature for those cases. There is no need to invoke a different effect that heat transfer resistance for the radiation case.

An example can give some insight on how small radiation heat transfer can be even in the presence of huge forward and back radiation effects. For this example we use an example with surface temperature like that found on Venus.

Choose a ball with a small gap with a vacuum, followed by an insulation layer large enough to cause a large temperature variation. The internal surface power to be radiated then conducted out is 17 Wm-2 (similar to absorbed solar surface heating on Venus). The insulation layer is selected thick enough and low enough thermal conductivity so that the bottom of the insulation the wall is 723K (similar to the surface temperature on Venus). The outside insulation surface would only be at 131.6K for this case.

The question is: what is the surface temperature of the ball under the gap?

From my equation (6), the surface of the ball would be 723.2K. The radiation gap caused an increase in surface temperature of 0.2K, which is only 0.033% of the temperature increase. The radiation from the surface of the ball had increased from 17 Wm-2 (for no insulation) to 15,510 Wm-2 due to the combined radiation gap and insulation, and back radiation to the ball is 15,503 Wm-2. This resulted in the net 17 Wm-2 heat transfer. However, the only source of the net energy causing the final wall temperature was the resistance to heat transfer causing the supplied 17 Wm-2 to continually raise the wall temperature until the net out was 17 Wm-2. Nowhere did the back radiation add net energy to the ball wall, even though the back radiation absorbed was huge.

This post is intended to help readers better understand how changes in temperature and water vapor at different locations affect the radiation balance of the planet, primarily outgoing longwave radiation (OLR).

A lot of questions on this blog come about because people have trouble visualizing the process of radiative transfer. This is not surprising – it’s not an intuitive subject.

Basic energy balance for the planet is covered in The Earth’s Energy Budget – Part One and Part Two. If some change to the climate causes more energy to be radiated into space then the climate system will cool. Likewise, if some change causes less energy to be radiated into space then the climate system will warm (assuming constant absorbed solar radiation). We use the term OLR (outgoing longwave radiation) for the radiation from the climate system into space.

Heating the Atmosphere and the Surface

Here is a calculation of how changing temperature in the atmosphere affects OLR at different latitudes and different pressures (1000mbar at the bottom of the graph is the surface):

From Soden et al (2008)

Figure 1 – Italic text is added

Understanding the Terminology

The top two graphs show the same effect under two different conditions. The top one is “All Sky” which is all conditions. And the second one is “Clear Sky”, i.e., the subset of conditions when clouds are not present. From left to right we have latitude and from bottom to top we have pressure. 1000mbar is the surface pressure = zero altitude, and 200mbar is the pressure at the top of the troposphere, and is around 14km (it varies depending on the latitude).

The units (the values are shown as colors) are in W/m².K.100hPa. (See Note 1). Already some readers are lost?

The important part is W/m² – this is flux (radiation in less technical language) or watts per square meter. We can call it power per unit area.

W/m².K is watts per square meter per 1K temperature change. So this asks – how much does the power per unit area increase (or decrease) for each 1K of temperature change?

If we asked, how much does the OLR increase for 1K increase in the whole atmosphere we would use the units of W/m².K. But when we want to look at how different layers in the atmosphere affect the OLR we are considering just once “slice”. So we have to have watts per meter squared per Kelvin per slice. In this case we are considering 100mbar (=100hPa) slices so this is how we get W/(m².K.100hPa).

Understanding the Results

So now the basics are out of the way, what do the graphs show us?

At the simplest level if the whole atmosphere heats up by 1K, the graphs show us the relative contribution of different latitudes and altitudes to OLR.

Let’s suppose we increase the temperature of the atmosphere at the equator between 1000 and 900 mbar by 1°C (=1K). This means we have taken a “layer” of the atmosphere and somehow just increased its temperature. What is the effect on the OLR? All bodies, including gases, emit according to their temperature and their emissivity.

Increase the temperature and the radiation (flux) increases. In our graph, at that location, for 1°C the flux increases by about 0.3 W/(m².100hPa).

Of course this means the climate cools which should be totally unsurprising. Increase the temperature of the atmosphere and it radiates more energy away into space. This is negative feedback. You can see from the graph that no matter where you heat the atmosphere it increases the flux into space – cooling the climate back down.

The bottom graph shows the result of heating the earth’s surface for clear sky and for all sky conditions. Note the difference. Under clear skies the increased flux emitted by the surface more easily escapes to space. When clouds are present the increased surface radiation is absorbed by clouds and the clouds emit at the cloud top temperature. (The cloud top temperature is high up in the atmosphere, is cooler than the surface, and so the emission to space is reduced by the presence of clouds).

At this point let’s make it clear what the graphs are not showing. They are not showing the ultimate result of heating the surface or a slice of the atmosphere after the whole climate has come into a new “equilibrium”. They are simply showing what happens directly to radiation balance as a result of a change in temperature of a “portion” of the climate.

If you’ve understood why the all sky/clear sky results in the surface graph are different then the difference between the first and second graph might be clear. The first graph is under all sky conditions (including clouds) and so the cloud tops are the region where a 1K increase has the greatest effect on OLR. Lower down in the atmosphere an increase in flux (due to hotter conditions) can be masked by clouds.

In contrast, under clear sky conditions changes in the lower atmosphere have a similar effect to changes in the upper atmosphere.

The authors say:

Under total-sky conditions the longwave fluxes are most sensitive to temperatures at the level of cloud tops that are exposed to space. This results in an obvious maximum just beneath the tropopause, where convectively detrained cirrus anvils are common, and along the top of the cloud topped boundary layer. By masking the surface, clouds also diminish the surface contribution to KT

Adding Water Vapor to the Atmosphere

More water vapor in the atmosphere generally reduces the outgoing longwave radiation which has a heating effect on the atmosphere. (The opposite of higher atmospheric temperatures).

The reason for this is with more water vapor the atmosphere becomes more opaque to longwave radiation. So, for example, with more water vapor in the upper atmosphere, radiation from the surface or the lower atmosphere is absorbed by the water vapor higher up.

Another way of looking at the problem is to say that the more opaque the atmosphere the higher up the effective radiation to space. And higher altitudes have colder temperatures. This is the essence of the inappropriately-named “greenhouse” effect. For more on this see The Earth’s Energy Budget – Part Three.

From Soden et al (2008)

Figure 2 – Italic text is added

Any calculation / visualization of the climate effect of increased water vapor has a choice – do you show the effect from absolute or relative changes in water vapor? As water vapor concentration reduces by more than 1000 times as you go up through the atmosphere showing relative change is generally preferred over showing absolute change.

The authors of this paper have chosen relative changes and calculated the change in OLR if temperature changes by 1K and relative humidity stays constant.

Some of the readers might be tempted to jump in here thinking that some unproven claim is being used as a premise for a climate calculation. But this is not so. It is simply a convenient way of illustrating OLR changes with water vapor changes.

Reviewing the graphs, we can see that under clear skies the deep tropics have the dominant water vapor response. This is not surprising as the tropics have so much more water vapor than the rest of the globe. See Clouds and Water Vapor – Part Two for discussion on this.

Under all sky conditions the effects of clouds are seen. The subtropics become more important than the tropics because the subtropics are mostly cloud-free. In the deep tropics the clouds “mask” the effects of lower levels in the atmosphere.

The authors comment:

By masking underlying water vapor perturbations, clouds reduce the sensitivity of OLR to water vapor changes and increase the relative importance of upper-tropospheric moistening to the total feedback.

Water vapor also absorbs solar radiation. If there was no water vapor wouldn’t the surface absorb all the solar radiation anyway? Does it make a difference? The surface doesn’t absorb all the solar (shortwave) radiation, and especially over snow/ice covered areas the proportion of reflected solar radiation is high. Therefore, solar absorption by water vapor (as water vapor increases) has a relatively larger impact at the poles.

From Soden et al (2008)

Figure 3 – Italic text is added

And Out of Interest..

This graph below wasn’t the intent of the article, but is in the Soden et al paper and is quite interesting.

This article is aimed at showing how the net radiative climate balance changes when atmospheric temperature and water vapor changes under clear and cloudy skies.

But once a climate model is used to compute changes in temperature we can see what different climate models show for the difference between the feedbacks:

Soden et al (2008)

This graph shows the results of various climate models.

As an example, Lapse rate feedback is the feedback from changes in the atmospheric temperature profile.

Final results from climate models are much more complex than determining how changes in water vapor or atmospheric temperature affect the emission of thermal radiation into space.

Conclusion

This article is aimed at increasing understanding of how changes in temperature and water vapor change the net radiation balance of the climate before any feedback.

The whole paper is well worth reading.

Further reading

        Understanding Atmospheric Radiation and the “Greenhouse” Effect – Part Ten

References

Quantifying Climate Feedbacks Using Radiative Kernels, Soden et al, Journal of Climate (2008) – Free Link

Notes

Note 1 – The units in figure 1 are Wm-2K-1. To non-mathematicians this notation can be difficult to understand. Most people know what m² means – it means meters squared. m-2 means per meter squared. So we can write Wm-2 or W/m2. Both mean the same thing.

The mathematical convention of Wm-2K-1 is better because it is more precise (when I write W/m2K does it mean watts per meter squared per Kelvin, or Watts per meter squared times Kelvin?)

But I write the slightly less mathematically precise way to provide better readability for the non-mathematicians.

Potential Temperature

Here is the annual mean temperature as a function of pressure (=height) and latitude:

From Marshall & Plumb (2008)

Figure 1 – Click for a larger image

We see that the equator is warmer than the poles and the surface is warmer than the upper troposphere (“troposphere” = lower atmosphere). No surprises.

Here is “potential temperature”, whatever that is..

From Marshall & Plumb (2008)

Figure 2 – Click for a larger image

We see that – whatever “potential temperature” is – the equator is warmer than the poles, but this version of temperature increases with height.

Why does temperature decrease with height? What is potential temperature? And why does it increase with height?

The Lapse Rate

Atmospheric pressure decreases with height. This is because as you go higher up there is less air above you, and therefore less downward force due to the weight of this air.

Because pressure decreases – and because air is a compressible fluid – air that rises expands (and air that sinks contracts).

Air that expands does “work” against its surroundings and because of the first law of thermodynamics (conservation of energy) this work needs to be paid for. So internal energy is consumed in expanding the parcel of air outwards against the atmosphere. And a reduction in internal energy means a reduction in temperature.

  • Air that rises expands
  • Expanding air cools

A little bit more technically.. adiabatic expansion is what we are talking about. An adiabatic process is one where no heat is exchanged with the surroundings. This is a reasonable approximation for typical rising air. It is reasonable because conduction is an extremely slow process (= negligible) in the atmosphere and radiative heat transfer is quite slow.

So if heat can’t be exchanged between a “parcel of air” and its surroundings it is relatively simple to calculate how the temperature changes. An example which contains way too much detail (because it is debunking a “debunking”) at Paradigm Shifts in Convection and Water Vapor?

The essence of the calculation is to equate internal energy changes with work done on the environment.

Textbooks usually start off with the simplest version, the dry adiabatic lapse rate, or DALR. (The “lapse rate” is the change in temperature with height of a parcel of air).

The DALR is for air without any water vapor. Now water vapor is very influential in our climate. The reason for neglecting it and starting off with this simplification is:

  • the calculation is easy and everyone (almost) can understand it
  • it represents one extreme of the atmosphere (polar climates and upper troposphere)

The result from this simplification:

Change in temperature with height = -g/cp ≈ -10 °C/km, where g = acceleration due to gravity = 9.8 m/s² and cp = heat capacity of air at constant pressure ≈ 1 J/kg.K

So for every km we displace air upwards it cools by about 10°C – so long as we displace it reasonably quickly. Well, this is true if it is dry.

A note on conventions – dry parcels of air moved upwards cool by 10°C per km, but the lapse rate is usually written as a positive number. So a cooling of 10 °C/km =  -10 °C/km, but by convention, equals a “lapse rate” of +10 °C/km. This makes it very confusing when people say things like “the environmental lapse rate must be less than the adiabatic lapse rate“. Are we talking about the number with the minus sign in front? Or not?

It’s not easy to think about negative numbers being less than other negative numbers when the “less than” test is applied after they have been made into positive numbers. Not for me anyway. I have to write it down each time.

The Saturated Lapse Rate

If a parcel of air contains water vapor and it cools sufficiently then the water vapor condenses. This releases latent heat.

As a result, moist rising air cools slower than dry rising air

So the saturated adiabatic lapse rate is “less than” the dry adiabatic lapse rate.

E.g. the change in temperature with height of a dry parcel of air ≈ -10 °C/km, while the change in temperature with height of a moist parcel of air in the tropics near the surface ≈ -4 °C/km.

Conventionally we say that the saturated adiabatic lapse rate is less than the dry adiabatic lapse rate. Because we write them as positive numbers.

Now note the caveats around the value for the moist parcel of air rising. I said “..in the tropics near the surface..”, but for the DALR there are no caveats. That’s because once we consider moisture we have to consider how much water vapor and the amount varies hugely depending on temperature (and also on other factors – see Clouds and Water Vapor – Part Three).

The maths is somewhat harder for the saturated adiabatic lapse rate but it’s not conceptually more difficult, there is just an addition of energy (from condensing water vapor) to offset the work done.

Potential Temperature

Potential temperature is usually written with the Greek letter θ.

θ = T.(p0/p)k

where T = (real) temperature, p = pressure, p0 = reference pressure (usually at 1000 mbar) and k = R/cp = 2/7 for our atmosphere (more on this in a later article)

With a bit of tedious maths we can prove that θ stays constant under adiabatic conditions (for dry air).

Let’s look at what that means.

Suppose the surface (1000 mbar) temperature = 288 K (15°C) so also θ = 288K.

Now the air is moved (adiabatically) to 800 mbar, so T = 270 K. That’s what you expect – temperature falls with height. And no change to potential temperature, so θ = 288 K.

Now we move the air to 600 mbar, and T = 249 K. More reduction of temperature. And still θ = 288 K.

So is this a useful parameter – move the air (adiabatically) and the potential temperature stays the same?

The parameter is mathematically sound, but whether it is useful remains to be seen. As an artificial construct no doubt many people will be shaking their heads..

Stability and Potential Temperature Profile

In Density, Stability and Motion in Fluids we saw that for a fluid to be stable, lighter fluid must be above heavier fluid. No surprise to anyone.

And we saw that in mechanical terms equilibrium is different from stability.

An unstable equilibrium can exist, but a slight displacement will turn the instability into motion. Whereas with a stable equilibrium a slight displacement (or a large displacement) will result in a restoring force back to its original position. For the simplest case – an incompressible fluid – this means that the temperature must increase with height.

If you watched the accompanying video of a tank of water being heated from below you would have seen that the instability caused turbulent motion until finally the tank was well-mixed.

We left the more complex case of compressible fluids (like air) until today. What we will find is that with a compressible fluid potential temperature is effectively the same as “real” temperature for an incompressible fluid.

So if potential temperature increases with height the fluid is stable, but if potential temperature decreases with height the fluid is unstable.

Let’s look at two examples:

Figure 3

On the left hand side we see an example where potential temperature decreases with height. At the surface, θ = 288 K but at 800 mbar, θ = 275 K. A parcel of air displaced adiabatically from the surface to 800 mbar will keep its potential temperature of 288 K. Now we convert that to real temperatures. The environmental temperature at 800 mbar is 258 K, but the parcel of air cools to only 270 K. This means the displaced parcel is warmer than the surroundings, so it is less dense – and therefore it keeps rising.

This case is unstable – clearly any air that starts rising or falling (perhaps due to atmospheric winds, pressure differentials, etc) will keep rising or falling.

On the right hand side we see potential temperature decreasing with height. The parcel of air displaced from the surface to 800 mbar reaches the same temperature as on the left – 270 K. But here the environmental temperature is 281 K. So the parcel of air is cooler than the surrounding air, so it is more dense – and so it falls.

This case is stable – any air that starts rising or falling experiences a restoring force.

So the potential temperature profile with height tells us whether the atmosphere is stable, neutral or unstable. If potential temperature increases with height the atmosphere is stable, and if potential temperature decreases with height the atmosphere is unstable.

This is exactly the same as comparing the actual temperature change with the lapse rate.

Both answer the same question about atmospheric stability.

Moist Potential Temperature

The previous section slightly over-simplified things because potential temperature is with reference to dry air and yet moisture changes the way in which temperature decreases with height.

So here is the real deal – moist potential temperature. This is also known as equivalent potential temperature:

From Marshall & Plumb (2008)

Figure 4 – Click for a larger image

Here we see the “real potential temperature” and notice that especially in the tropics moist potential temperature is almost constant with height – up to the tropopause at 200 mbar. This is due to convection creating a well-mixed atmosphere. In the polar regions we see that the atmosphere is still quite stratified, which is due to the lack of convective mixing.

Conclusion

Potential temperature is very useful. It is a method of comparing the temperature of air at two different heights.

And if potential temperature is constant or increasing with height then the atmosphere is stable.

The atmosphere is mostly stable for dry air. If you refer back to figure 2 you see that (dry) potential temperature is quite stratified which means any displaced air experiences a restoring force. So it is moisture in the air that is the enabler for most of the convection that takes place. Figure 4 shows us that the atmosphere is “finely” balanced as far as moist convection is concerned.

(Remember of course that these graphs are annual mean values. It doesn’t mean that dry convection does not occur).

Potential temperature is also a useful metric because the change of potential temperature with height can be used to calculate the strength of the restoring force on displaced air. The result is the buoyancy frequency and the period of internal gravity waves.

While writing an article on Lapse Rates and Potential Temperature I realized, from questions on this blog and from comments on other blogs, that the subject of stability perhaps wasn’t so clear.

So in advance of that article, here are some basics on stability and density in fluids. Science, unlike for example most of history and politics, is one subject built on another. If we fail to grasp fundamental concepts clearly then the more difficult subjects, the next steps, will always be a mystery.

Therefore, if you reach the end of this article and don’t feel that the subject has been clearly explained, ask away.

Stability

This can be an involved subject but we only want to consider a very simple aspect of stability. Take a look at the two cases below. In both cases the ball is not moving. It is in equilibrium:

Figure 1

Everyone can appreciate the difference between the two from common experience.

The first case is stable – push the ball a little to the left or right and it moves back to the center, overshoots, comes back, overshoots and so on.. and eventually ends up stationary at its starting point. It oscillates. Real world friction dissipates the energy injected into the system from the initial disturbance and causes the ball to finally return to rest.

The second case is unstable – push the ball a little to the left or right and it accelerates away and never returns to its starting point.

The reason for stating the apparent obvious is that both are in equilibrium. It is only with some kind of disturbance that the unstable situation “rearranges the energy of the system”. Without some kind of disturbance nothing happens. Of course, depending on the exact setup the disturbance needed might only be tiny.

Another way to think about stability is potential energy vs kinetic energy.

For newcomers to physics or mechanics, a non-technical description is:

Often with simple motion we can think about potential energy being converted into kinetic energy and vice-versa. Take a bouncy ball released from height so that it drops to the floor. It starts with zero kinetic energy and by the time the ball has hit the floor the potential energy (height) has been turned into kinetic energy (motion). Then the ball bounces up in the air, stops at a point and returns to the floor.

Energy is dissipated along the way by the friction due to air, and the energy lost in the impact so eventually the ball finishes at rest on the floor.

When a mass is moved higher in a gravitational field the potential energy is increased. When a mass is moved lower in a gravitational field the potential energy is reduced.

When potential energy is reduced, the change can be released as kinetic energy (like a falling ball). If however you increase the height of the mass then the increased potential energy can only consume kinetic energy (or it has to be supplied from elsewhere).

Take a look back at the two scenarios in figure 1. In the first scenario a disturbance increases potential energy so we have to do work to move it up the side of the container. Therefore, it is stable.

In the second scenario a disturbance reduces potential energy so we don’t need to do any work to create kinetic energy, or motion.  (Only the small work needed to disturb the ball from its position). Therefore, it is unstable.

Hopefully, this is so clear that readers wonder why I am still explaining it..

Density in an Incompressible Fluid

Let’s look at the simple case of an incompressible fluid like water where density depends on temperature but not on pressure.

And let’s look at why it is that lighter fluids actually rise:

From Marshall & Plumb (2008)

Figure 2

The description in the figure 2 caption is the best (i.e., simplest) explanation of why lighter fluids rise.

Displacement of a Parcel in An Incompressible Fluid 

So consider a fluid parcel being displaced upwards. For now, it doesn’t matter why or how. Just that it is moved. If the movement is done quickly enough it will not lose or gain heat during its journey (because heat exchange can only take place by diffusion, which is a very slow process in most liquids).

We call this movement without exchange of heat (with the surroundings) an adiabatic process.

And because the fluid is incompressible it will do no work on its surroundings, so its internal energy will be conserved. As a result its temperature will stay the same and so its density will also stay the same.

If the density of the surrounding fluid increases with height then this parcel will accelerate upwards, because the parcel has a lower density than its environment and so (as in figure 2) the differential pressure will “push it” upwards.

If the density of the surrounding fluid reduces with height then the parcel will be slowed down and experience a restoring force back to where it came from.

Now usually density is related to temperature. In the case of water, as temperature is increased density is decreased.

So if the temperature of the surrounding fluid increases with height, the density decreases with height and displaced parcels of fluid have a restoring force back to their origin. So in this case (this normal case) the fluid is stable.

If the temperature of the surrounding fluid decreases with height, the density increases and displaced parcels accelerate in the direction in which they started moving. So in this case (this strange case) the fluid is unstable. Clearly the instability will result in fluid movement and therefore ultimately in stability.

So it’s all about the difference between the change in temperature of a displaced parcel vs the change in temperature with height of the environment. And the displacement can take place for many different reasons. Don’t think about the reason for the initial displacement – as with figure 1 just think about whether a displacement will result in a restoring force back to the starting point, or in an acceleration away from the starting point.

Here is a very educational example of convection as a result of heating a liquid from below. This example comes from the webpages accompanying the Marshall & Plumb (2008) textbook – I recommend the video link within that page (but read the text and diagrams first):

Figure 3 – Click for movie

And in the next article we will consider what happens with a compressible fluid like air. In that case when a parcel of air moves upwards, and expands because of lower pressure, its temperature drops. That makes the stability question slightly more complicated, but the same principles apply.

Further reading – new article: Potential Temperature