The atmosphere cools to space by radiation. Well, without getting into all the details, the surface cools to space as well by radiation but not much radiation is emitted by the surface that escapes directly to space (note 1). Most surface radiation is absorbed by the atmosphere. And of course the surface mostly cools by convection into the troposphere (lower atmosphere).

If there were no radiatively-active gases (aka “GHG”s) in the atmosphere then the atmosphere couldn’t cool to space at all.

Technically, the **emissivity** of the atmosphere would be zero. Emission is determined by the local temperature of the atmosphere and its emissivity. Wavelength by wavelength emissivity is equal to **absorptivity**, another technical term, which says what proportion of radiation is absorbed by the atmosphere. If the atmosphere can’t emit, it can’t absorb (note 2).

So as you increase the GHGs in the atmosphere you increase its ability to cool to space. A lot of people realize this at some point during their climate science journey and finally realize how they have been duped by climate science all along! It’s irrefutable – more GHGs more cooling to space, more GHGs mean less global warming!

Ok, it’s true. Now the game’s up, I’ll pack up Science of Doom into a crate and start writing about something else. Maybe cognitive dissonance..

Bye everyone!

Halfway through boxing everything up I realized there was a little complication to the simplicity of that paragraph. The atmosphere with more GHGs has a higher emissivity, but **also** a higher absorptivity.

Let’s draw a little diagram. Here are two “layers” (see note 3) of the atmosphere in two different cases. On the left 400 ppmv CO2, on the right 500ppmv CO2 (and relative humidity of water vapor was set at 50%, surface temperature at 288K):

*Figure 1*

It’s clear that the two layers are both emitting more radiation with more CO2.More cooling to space.

For interest, the “total emissivity” of the top layer is 0.190 in the first case and 0.197 in the second case. The layer below has 0.389 and 0.395.

Let’s take a look at all of the numbers and see what is going on. This diagram is a little busier:

*Figure 2*

The key point is that the OLR (outgoing longwave radiation) is **lower** in the case with more CO2. Yet each layer is emitting **more** radiation. How can this be?

Take a look at the radiation entering the top layer on the left = 265.1, and add to that the emitted radiation = 23.0 – the total is 288.1. Now subtract the radiation leaving through the top boundary = 257.0 and we get the radiation absorbed in the layer. This is 31.1 W/m².

Compare that with the same calculation with more CO2 – the absorption is 32.2 W/m².

This is the case all the way up through the atmosphere – each layer **emits more** because its emissivity has increased, but it also **absorbs more** because its absorptivity has increased by the same amount.

So more cooling to space, but unfortunately more absorption of the radiation below – two competing terms.

### So why don’t they cancel out?

Emission of radiation is a result of local temperature and emissivity.

Absorption of radiation is the result of the incident radiation and absorptivity. Incident upwards radiation started lower in the atmosphere where it is hotter. So absorption changes always outweigh emission changes (note 4).

### Conceptual Problems?

If it’s still not making sense then think about what happens as you reduce the GHGs in the atmosphere. The atmosphere emits less but absorbs even less of the radiation from below. So the outgoing longwave radiation increases. More surface radiation is making it to the top of atmosphere without being absorbed. So there is less cooling to space from the atmosphere, but more cooling to space from the surface **and** the atmosphere.

If you add lagging to a pipe, the temperature of the pipe increases (assuming of course it is “internally” heated with hot water). And yet, the pipe cools to the surrounding room via the lagging! Does that mean more lagging, more cooling? No, it’s just the transfer mechanism for getting the heat out.

That was just an analogy. Analogies don’t prove anything. If well chosen, they can be useful in illustrating problems. End of analogy disclaimer.

If you want to understand more about how radiation travels through the atmosphere and how GHG changes affect this journey, take a look at the series Visualizing Atmospheric Radiation.

### Notes

Note 1: For more on the details see

- Part Three – Average Height of Emission – the complex subject of where the TOA radiation originated from, what is the “Average Height of Emission” and other questions
- Kiehl & Trenberth and the Atmospheric Window

Note 2: A very basic point – absolutely essential for understanding anything at all about climate science – is that the absorptivity of the atmosphere can be (and is) totally different from its emissivity when you are considering different wavelengths. The atmosphere is quite transparent to solar radiation, but quite opaque to terrestrial radiation – because they are at different wavelengths. 99% of solar radiation is at wavelengths less than 4 μm, and 99% of terrestrial radiation is at wavelengths greater than 4 μm. That’s because the sun’s surface is around 6000K while the earth’s surface is around 290K. So the atmosphere has low absorptivity of solar radiation (<4 μm) but high emissivity of terrestrial radiation.

Note 3: Any numerical calculation has to create some kind of grid. This is a very course grid, with 10 layers of roughly equal pressure in the atmosphere from the surface to 200mbar. The grid assumes there is just one temperature for each layer. Of course the temperature is decreasing as you go up. We could divide the atmosphere into 30 layers instead. We would get more accurate results. We would find the same effect.

Note 4: The equations for radiative transfer are found in Atmospheric Radiation and the “Greenhouse” Effect – Part Six – The Equations. The equations prove this effect.

## Natural Variability and Chaos – Two – Lorenz 1963

Posted in Atmospheric Physics, Climate Models, Commentary on July 27, 2014| 25 Comments »

In Part One we had a look at some introductory ideas. In this article we will look at one of the ground-breaking papers in chaos theory – Deterministic nonperiodic flow, Edward Lorenz (1963). It has been cited more than 13,500 times.

There might be some introductory books on non-linear dynamics and chaos that don’t include a discussion of this paper – or at least a mention – but they will be in a small minority.

Lorenz was thinking about convection in the atmosphere, or any fluid heated from below, and reduced the problem to just three simple equations. However, the equations were still non-linear and because of this they exhibit chaotic behavior.

Cencini et al describe Lorenz’s problem:

Willem Malkus and Lou Howard of MIT came up with an equivalent system – the simplest version is shown in this video:

Figure 1Steven Strogatz (1994), an excellent introduction to dynamic and chaotic systems – explains and derives the equivalence between the classic Lorenz equations and this tilted waterwheel.

L63 (as I’ll call these equations) has three variables apart from time: intensity of convection (x), temperature difference between ascending and descending currents (y), deviation of temperature from a linear profile (z).

Here are some calculated results for L63 for the “classic” parameter values and three very slightly different initial conditions (blue, red, green in each plot) over 5,000 seconds, showing the start and end 50 seconds – click to expand:

Figure 2 – click to expand – initial conditions x,y,z = 0, 1, 0; 0, 1.001, 0; 0, 1.002, 0We can see that quite early on the two conditions diverge, and 5000 seconds later the system still exhibits similar “non-periodic” characteristics.

For interest let’s zoom in on just over 10 seconds of ‘x’ near the start and end:

Figure 3Going back to an important point from the first post, some chaotic systems will have predictable statistics even if the actual state at any future time is impossible to determine (due to uncertainty over the initial conditions).

So we’ll take a look at the statistics via a running average – click to expand:

Figure 4– click to expandTwo things stand out – first of all the running average over more than 100 “oscillations” still shows a large amount of variability. So at any one time, if we were to calculate the average from our current and historical experience we could easily end up calculating a value that was far from the “long term average”. Second – the “short term” average, if we can call it that, shows large variation at any given time between our slightly divergent initial conditions.

So we might believe – and be correct – that the long term statistics of slightly different initial conditions are identical, yet be fooled in practice.

Of course, surely it sorts itself out over a longer time scale?

I ran the same simulation (with just the first two starting conditions) for 25,000 seconds and then used a filter window of 1,000 seconds – click to expand:

Figure 5 – click to expandThe total variability is less, but we have a similar problem – it’s just lower in magnitude. Again we see that the statistics of two slightly different initial conditions – if we were to view them by the running average at any one time – are likely to be different even over this much longer time frame.

From this 25,000 second simulation:

Repeat for the data from the other initial condition.

Here is the result:

Figure 6To make it easier to see, here is the difference between the two sets of histograms, normalized by the maximum value in each set:

Figure 7This is a different way of viewing what we saw in figures 4 & 5.

The spread of sample means shrinks as we increase the time period but the difference between the two data sets doesn’t seem to disappear (note 2).

## Attractors and Phase Space

The above plots show how variables change with time. There’s another way to view the evolution of system dynamics and that is by “phase space”. It’s a name for a different kind of plot.

So instead of plotting x vs time, y vs time and z vs time – let’s plot x vs y vs z – click to expand:

Figure 8 – Click to expand – the colors blue, red & green represent the same initial conditions as in figure 2Without some dynamic animation we can’t now tell how fast the system evolves. But we learn something else that turns out to be quite amazing. The system always end up on the same “phase space”. Perhaps that doesn’t seem amazing yet..

Figure 7 was with three initial conditions that are almost identical. Let’s look at three initial conditions that are very different: x,y,z = 0, 1, 0; 5, 5, 5; 20, 8, 1:

Figure 9– Click to expandHere’s an example (similar to figure 7) from Strogatz – a set of 10,000 closely separated initial conditions and how they separate at 3, 6, 9 and 15 seconds. The two key points:

From Strogatz 1994

Figure 10A dynamic visualization on Youtube with 500,000 initial conditions:

Figure 11There’s lot of theory around all of this as you might expect. But in brief, in a “dissipative system” the “phase volume” contracts exponentially to zero. Yet for the Lorenz system somehow it doesn’t quite manage that. Instead, there are an infinite number of 2-d surfaces. Or something. For the sake of a not overly complex discussion a wide range of initial conditions ends up on something very close to a 2-d surface.

This is known as a

strange attractor. And the Lorenz strange attractor looks like a butterfly.## Conclusion

Lorenz 1963 reduced convective flow (e.g., heating an atmosphere from the bottom) to a simple set of equations. Obviously these equations are a massively over-simplified version of anything like the real atmosphere. Yet, even with this very simple set of equations we find chaotic behavior.

Chaotic behavior in this example means:

## Articles in the Series

Natural Variability and Chaos – One – Introduction

Natural Variability and Chaos – Two – Lorenz 1963

Natural Variability and Chaos – Three – Attribution & Fingerprints

Natural Variability and Chaos – Four – The Thirty Year Myth

Natural Variability and Chaos – Five – Why Should Observations match Models?

Natural Variability and Chaos – Six – El Nino

Natural Variability and Chaos – Seven – Attribution & Fingerprints Or Shadows?

Natural Variability and Chaos – Eight – Abrupt Change

## References

Deterministic nonperiodic flow, EN Lorenz,

Journal of the Atmospheric Sciences(1963)Chaos: From Simple Models to Complex Systems, Cencini, Cecconi & Vulpiani,Series on Advances in Statistical Mechanics – Vol. 17(2010)Non Linear Dynamics and Chaos, Steven H. Strogatz,Perseus Books(1994)## Notes

Note 1: The Lorenz equations:dx/dt = σ (y-x)

dy/dt = rx – y – xz

dz/dt = xy – bz

where

x = intensity of convection

y = temperature difference between ascending and descending currents

z = devision of temperature from a linear profile

σ = Prandtl number, ratio of momentum diffusivity to thermal diffusivity

r = Rayleigh number

b = “another parameter”

And the “classic parameters” are σ=10, b = 8/3, r = 28

Note 2: Lorenz 1963 has over 13,000 citations so I haven’t been able to find out if this system of equations is transitive or intransitive. Running Matlab on a home Mac reaches some limitations and I maxed out at 25,000 second simulations mapped onto a 0.01 second time step.However, I’m not trying to prove anything specifically about the Lorenz 1963 equations, more illustrating some important characteristics of chaotic systems

Note 3: Small differences in initial conditions grow exponentially, until we reach the limits of the attractor. So it’s easy to show the “benefit” of more accurate data on initial conditions.If we increase our precision on initial conditions by 1,000,000 times the increase in prediction time is a massive 2½ times longer.

Read Full Post »